
72 Proceedinss ofthe,lth WSEAS lnÌ. Conl on SYSTEM SCIENCE and FNGINEERINC. Rio de Jancno. Brazrl. AoúÌ 25-27- 2005

Confronting Antagonistic Views of Software Design

Sergio Martins Femândes
José Eduârdo Belix

Selma Shin Shimuzir Melnikoff
Edison Spina

The Department ofComputing and Digital Systems Engineering (PCS)
UniveÍsiry ofSào PaÌrlo - PolFechnjc School

Av Professor Luciano Cualberto, travessa 3, n'158 - Sala C2-42.
Cidade Universitárìa - São Paulo - SP

CEP:05508-900
Brazil

(seÍgio.martins; jose.belix; selma.melnikoff; edison.spina)@poli.usp.br

,íàrl,'a.rr - Despite some skepticìsm fiom the software ind stÌy aboui sotuvar€ desisn, the traditionâl software
engineering app.oach has been enrichcd in the last years by new concepts, tools ând techniques, lìke design
pattems. sofiwâre architectuÌe, the UML, ftameworks aìd. more rccently, by the emerg€ncy of OMC'S
MDD/MDA. On the other hand. different approaches have emerged, norably rhe agile processe5, opposrng many
estâblished softwâÌe design best practices.
This pâper brìefly preserts the appÍoach regârding these softwâre design views, and characreriz€s rheir strengÌhs
and weâknesses for sp€cific tlpes ofsoftware systems developments-

KeJ-Words: - Soft aÍeDesign, Software Modeling, RUP, Agile Processes, MDDMDA

Í

it
s

d

d
T

p

is

[]
T
c
ú

p

n

R

qÌ

ht1 Introduction
The design of a softwâre system is a k€y aspect of
software de\elopment The sofrware engineenng
communìty has aÌwâys emphasized the quâlity of
software design as Ândamentâl foÍ Ìhe effective
success of solìwaÌe developmenl projects.
On the oth€r hand, a lârge part of the softwâÌe
developmenL indu.ry has resisred putÌrng a

significant effort oÍ the design of software systems.
Even compÌex systems were built by the direct
transiatìon oí requirements into source code. The
central ârgÌment of the industry to justi8/ these
practices: tight schedules Others are the diffrculty to
keep the model ând the code spchronizcd during the
softwaÍe life cycle; and the developer's lack ofskills
to use modeling languages effectively.
Orìe dn.wer of rhe .olrware erÌgrne(nng coÍÍrmuniry
to úat point of view is to underlne úe frequent
quâììty and maintenance problems in software
systems that are built wiúout a grâphìc model.
Modeling reduces úe codrng effod ând rncreases
qüality, making maíúenance easier.
\evenhele.s- úe \ofNrdre engineering conÌmunrÍv
Íecogniz€s thât tbe problems appoinÌed by the

industry aÌe reÌevant, and is trying to solve them. The
usual path they poìnt involves adequate devciopôrs
faining and extensive use of software tools (like

CASE tools) to suppoÍ úe modelìng effort and to
help âütomatically synchroniz€ model and code.
The OMG (Object Manâgement cÍoup) adopted úe
vision of tools supporting modeling, and is
developing an initiative nâm€d MDAMDD (model
driven development / modei driven architecture).
MDD establishes standard ways for úô elâborarion of
UML software models úat âre platform independent,
and the automatic translation oi that models into
other models plâtform dependent models - and,
subsequently, into source code.
A gÍoup of the softúare engineering community self
nam€d agiÌe community folloìvcd a differenr path,
quesiioning the conventional prâctice of softwar€
design. This community advocates what is called
evolìrtionary desigÌÌ, which reduces úc importance of
â gÌaphic design, accepting it could be djrecrìy
expressed into thô soìrrce code.
This paper brìefly analyses each of úese vicws, and
characterizes their sh€ngús and weâknesses for
specific typõs of sofÍvare systems dôvelopments

2 The Software Industry View
The software industry recognjzes the probìe'ns
conceming software deveiopment and maìntenâncc,
but it fÍequcntly has been skeplical abour rbe

3

E

th

TI

ol
dt

sc

kr

hr

TÌ
U:
pr
cl

th:

7l

.cr.rJì--\ ol Ihc con\(r.lronrl "ofluare
. l:,r-. '.g

b".t o,,.t,."s to 'olve tlrese problems

TÈ software industry acknowledges, generally

*rthout much conviciion, that softvr'aÌe modeÌing is

üseful. but ârgues thal there is nor enough Ìime to do

rl. düc ro thc tight sch€duÌcs of soft\À'are proJects.

Some modeling efforts whi€h are successtui âr shôrt

(.1rnj I'eLu€n1y rre losÌ .r Iong .crm. bccâurr rr rs

,lLillcult do k€ep model and code synctuonized, wÌÌile

rÌìr solh\are evolves ov€Í ìts ìife cycle.

rhLs skcplicism is partially duc io the failure ofmany
.. ssre dcvelopmenr proccs' rr,'pl.merration

r, tcL r\: .rd lo loÊ lack ol knowledsc ol ìr" sôlrwdrc

, ünc.1rnÂ cvL'lurion ú! ough rhc lr"Ì .le. âde' Íhcrc

Ls ãlso a perception that úe soft\tare community is

rdequately skiÌlcd to writô code, nol to build modeÌs

Lll
,r q,rrlÌr) impro\emenr and úre quanÌrry incred"e ol

Computer Sciences courses woÌldwid€ are weakening

.1.. a.grnìenr. Nowadâys. Ihere ì. a nc$ gÊnerarion

ol sofl âre cngine€rs €ffectìvely using design

pltems or soÍìwar€ architecture modeLing, allhough
ir rs Ìcss frequent *ìat a comprehensive nìodcling

R,rsearches show ú41 lhô software industry has â

rclalively low proj€cts success râte, and insufiìcjent
qìrâliiy records. Still, the gÌowing sophistication of
software systems and the spread of softwarê in all
humân âctiviiies and plâces make it impossjble to
conclude that the softwaÍe induslry has failed.

3 The traditional Software
Engineering Community view
A tundamentâl softwâre engineeÍing prâctice is drât
Ìhe graphical, or visual, design should precede
coding. Both the stÍuctured anaÌysis ând object-
orìent€d paradigms jncorpoüie thìs practice.
The development o{ the L]Ì\{L, the explicìt modeling
of the softwÂre archilecture aÍd the pÍoposition of
design pattems have enrìched úe traditionâl vision of
softvare design, helping increasing the conceptual
lnowledge and the ability of software designers 10
create higher quaÌity softwãre desìgns, achìcving
lrÊher qudlity sofrwÂrc systems.
lhrs rreu r. expr<ssed. for in.ranc<. rn úe Rauonal

,ificri prorcss (RUp) [R_A oNAì o0r]. which
l'ro|)oses an iterative and incrementâl sofr,vâre Ìile
cÌclc. The initiâl phases of the RLIP life cycle are
lfcÌrsed on the alefinition of softwãre architecture.
rnil on th€ constÌuction of an executable pr<rtotype
ìbal validares ihe architecture. RUP emphasizes thc
L\e of dcsign patt€ms and the deÍìnition of whal it
'L Ínclhdnrsms (l.ke p(r)r.tenc(or me.'aging

tttrchanrsrns) for softwar€ design_ ÌÌs Analysis and

Design discipline recommcnds the developnÌent of
two mod€ls: an analysis model, relativeÌy iìee ol
technologicâl consìdeÍâtions, which is Fanslat€d in â

design model. Both modeÌs describe all tho
tunctionality of the software sysrem-

Although it should be configuÍed for specific
projects, RUP is, in essence, a relâiively fo.mal and
prescriptivc process. Activiti€s, disciplines, âÍifâcts,
Íoles of the pro.ess ar€ vcry clcarly dcfincd and
log;câlly organized in workflows [5], [6]. Such Ìcvel
of fomalism and thc great quantity of artìfacts it
€ncompasses mâkes RUP crilics calÌ it iedrlwerall

3.I MDD / MDA
Probably the most advanced stag€ for sofÌware dcsign
oÍ Íhe ronventional !ie* ol rhe 'ofrsare enginecnng
coÌnmunity is the MDD, which is a proposition ofÌhe
OMC for softwaÍe developnìent [ì2].
Its central idea is the eìaboration ofUML models ând
the use of spccialized CASE tools to âutomâtically
trarslate Ìhese modeìs into code.
MDD is based ìn a standard being deveiop€d by úe
OMc, nârned MDA, which defines a gcncral
Ârchitecture and technoiogìes úat are úe loundation
of MDD. Although this effort has alreâdy produced
results, it is still a work in progÍess.
It is possible to chamcterize MDD as úe next st€p for
softqare devcìopment, afrcr úe úird generarion
prograÍÌming tanguâges, which use compilets to
automatically translôte souÍce code into bìnary code-

The MDD,MDA vision is compatible and develops
Jacobson's vision tal. Jacobson foresees an
environrnent in ,rhich the teâm cân focus on the
creâtive tasks of soflware development relâted to
business logic d€finiÌion. Very specialized softwar€
tooÌs would supply the oúer tasks, defined by
Jacobson as non-creative.

4 The agile community view
For rhe lasr years. a group ofrhe sofrrvarc engineering
community gâthered to provide í new âpproach for
sofwâre developmcnt, named lighi, or agile. Thcy
developed many soflware dcvelopment processes.

The mosl popular is the ExtÌeme ProgÍamming (l{P)
I2l. This community creared â noÌì-govemm€n'aì
organization called The Agile Allìance
(u..ww.agilealliânce.com), with aims to develop ând
disseminate their ideas-

The agile processes do rìot ìÌrtend to be â r€cipe for
soflware of âny size and complexi$r. Ii is focuscd on

smaìl to medium duration softwar€ projecls. wiú
red r(ol ì0 pcoole mi\rmum. f\)srcally clo.e '.r
each oúer while working on úe proiect.

\-.

74 proceedrnes otthe 4th WSEAS lnl. Coìl on SYS] ENÍ SCIENCe and ENGINEERING. RiÒ de Jàpeiro. AÍàziÌ- ApriÌ25-27. ?005

These pÍocesses oppose the conventional appÍoach
for soflware dev€lopment in many ways. They are not
very pr€scÍiptile, are hjghly iterâtive, âÍd arE adept

of low level of ceremony: dcmând very little
docümenlation and formalism [5].
Resarding software design (úe focus of this paP€Ì),

the agììe process€s do not €mphasize visual

modcling. {n fact, it is quite úe oppositc. They caÌl
their âpproach lo design "evolütionary desìgn" It
recommends incremenlal design, informally
conceived (not using graphicaÌ diagrams. Iike UML
onet, and diÍecrly cxpressed in the code. XP. for
rnstance. does not forbid the elaboration of UML
diagrams, but, in practÌc€, d;scourages it [2].
XP states that the preferentiâl way to communicate is

talking, nol gÌaphìc diagrams, âlthough it acc€pis that
documents are c'eÀred rn rh. end ot the ptoJecr. ro

Íegjster information üsetul to mainÌenance teams
Dünng a proj€ct, if the team is comfortabÌe wiÌh
dragram.. rhey can be ìnl','Tally uçed ron d

bÌackboard, for inslance), bu! not kept for future usc

Below, w€ briefly present some ofthe most important
practices ofXP.
M€tâphor it is considered by XP a synon)'rn of
sofïwaíe architecüre. But whiìe aÍchiiecture is
generally expÍessed graphically, a metãphor is
expressed textually, like a story. It must define a

coherent general theme that both customers ând

developers understand.
R€facto.ing - continuousÌy redesi$ úe softwar€, to
improve its response to change. Refactoring does not
chânge sofÌwâre's tunctionâlity, but it's intemal
stÍuctuÌe- When new functionality needs ro be added,
the firsÍ step is alwâys refactonng, to sìmpliry the
tunctionality's inüement-
Tesr first develop some functionality tests before
impìement ir. Automate these tests. After that, code
the fincrionality and irnflediâtely apply the tests.

ConÌinuous integmtion build the software every two
houÌs, so lhat it is possibÌe Ìo idendry integration
problems Âs soon âs possible,
MaÍin Fowler [3] aÌgues that the practices mentioned
above specially test íirst ând continuous inÌegration,
b.rt ar.o relactonng - enJble XPs cvoLurrondry
design approach, because úey reduc€ the cost of
changìng úe ìmplemented code, n€utralizing tb€
perception thât the cost of a change in úe soltwâre
grows exponentially aiong úe sofiwâre's life cycte.
"With XP, ir is possible to reduce úe cost of
changing, so that a chânge in any point of time will
havc the sãme cost" l8l.

5 Analyzing the approaches presented
This section presents an analysis of strengús and

weaknesses of cach view pÍesented before. The
indìrstÍy vìew will not be analyzed, becruse it onÌy
descnbes, ìn general, the actual sihìâtion ãnd

problems of software development.

5.1 The traditional SoÍtÌrâre Engineering
Commünity view

Strengths
Following well-established soft*'are engineering bcsl
p.actices in a systematic way effectivcly increases the

success rate (achieving cost and schedule targets,
producl quaìity) of software pro.jects.

Jacobson's vision of â UML centered sofÌwar€
de!elopmenr.upponeo by po$ertul rool(rç gainrng
ground, although jt still needs effoÍt to b€come nol
just a vision, but a reality. oMG's vision goes in úe
same direction, prioritizing the use of UML and

âutomatic translomation tools. Companies Iike IBM,
Compuware and others aÌe investing a lo1 to provide
the âdequate concepts and tools dìal will make that

Software projects ofhigh size and complexity need a

hisheÍ level of ceremony [5].
Prescriptive softwâre engineering pÍocesses cân be

moí€ flexible and d],rìamic thân their d€trâctors
suppos€. A process like RUP calls iÌself a process
framework and, as such, n€eals to be configured for
úe specific needs aÍd constraints of each project
where it is used. There aÌe light v€Ísions of RUP, of
lower ceÍemony, Ínôre adequâte for smaller aDd not
so complex projects.

For rnany big cornpanies in ìrhich software is not th€

core business büt represents â large part of the

business (iike financiâl institutions, for instânce),
developers lìequently lack the culfure and the

expeÍtise to buìld softwa.e models. [1] argues thât
UML modeling is impÉcticable íor a whole
gen€ration ofdevelopers who will still be woÍking for
a long tjm€.
Designing software, âlthough conceptually and

didactically very interesting, requires a large effoÍÍ
that is no! feasjble in many situations
Complex projectr need specialjzed roles- Those lvho
play the role ofdesigners obviously focüs on d€sign.
After some rime, úey loose contact with the most
recent impÌementation techniques and Íesources,
mâkìng úeir úodels especialiy models wiú a lot of
iechnoÌogìcâl informâtion - nôt respect€d by
specialists in a speciÍic technological platform. These
will have their ov,/n ideâs, frequently effectively more

prob

5.2

StÍe
Qu€.

Ihal

Tech

Cì€ã

for ,

cycÌe

Agil(

impo

Dela'
prqie

leam,

the p
proje
proje

ìrappr

i3l c,

and il
archit

to st'

to ch.

l4l a'
rell

indust

\ide
Aganr

big or

rrdt!cd, ,bout how to solvc implcmentation

problüms [J]

5,? The agile community view

SÍrcngths
QLc\ ron ng convenrional hi\dom r,. Ìn it.elt
...nÂ(n. becausc ir dismanrlec esìdblished dogÍna.

iJrd anâlyses the problem fÍom a different point of
\icq'. The emphâsis thât the agile communìty pul on

rhrr sübjecr provides vaìuabÌc ìnsights for nlanagers,

úê\'elopcrs ênd rheorisls.

ïccbnìqües ìike refactoring, test first. and oihers,

have already Proved úeir value.

Some of thc agilc processes, Ìike XP. are no1 very
specific about how desìgn is done. Others, ìike Agrlü
Modeling Ul were created do fill thât gâp.

5 Conclusion
The nadrLìonaì anp'oach ol Ihe solLwâre enginee ng
coÍÌmunity, prioritizing visuâl modeling, effectively
add, !rlue ro soÍrq are oev.lopmenr. lrs bc(r prã.r'. c.
are conceptuauy inconreslable. The bcn€firs ofvisììâl
nìodeììng are increased ií we explicilÌy defin€ why
the model is being buiÌt, like somc in thc agiÌe
cornmunity reconrnìend
Formãlism nol neccssarily is weakness. Ìr cân be
strenglh, for big and complex systems, and big ând
complex organizations.
On úe oúer hand, úe resistance of úe software
industry to adopt visual modelìrÌg in Ìarge scale
means that, to a certain exrent. the traditional vision
fail€d. Soft\Ìare enginceÌìng needs to evolve, so thai
rhe gdr hcrqccn he.r pracrrccs and real pracLrces cdn
h(r€duced. and the çuccrss rare ol colrwdre pro-ec,ç
in Ìndustrial scale can incrcase
Agile processes are valid in specific sinìâÌìons. but
they also carry conception deficiencies, ând âre
focus€d on a rcstrict universes: smâIl to medìum
projects with development teams wiú vôry speciíic
profiles.
ln â short sent€nce: visuâl modeling and more
prescriptive processes are usetul do deal wiú
conplex;ty; while agìle pÍocesses deâl wirh the need
offlexibility.
The MDD,^{DA approâch mây srill Ìed€Íinc the
coüÌse of software eDgineering, like úird generation
Iânguages did, some decades aeo. More probably,
rhough. ir will be used ìn a more resfirct uni\crie
(like âgile pÍocess€s). It is possible, too, that it fails,
being adopted by vêry few oÍganìzations and
projects. It still needs to prove its value-

Relere ce:.

[1] Ambler, Scott. Agilc Model DÍiven Dev€lopmen!
is Good Enough. IEEE Sofrware September-
October 2003.

[2] Beck, Kent. Extrcme P.ogrâmning Explaircd.
Addison-Wesiey 2000.

t3l FowleÍ. Mârtin. Is Design Dead?
hq)://mâÍinfoü'ler.com/aíicìes/desiqnDead.htq!.

I,1l Jacobson, Ivar. Not Every Light Process Is Agile.
wü.rv.th€rationaledge.com.

[5] KÍoll, Per; K,'Ìchlen. Philippe. The R.rrional
Unified Process Mâde Easy: A PÌactitioìrer's
Curde (o he Rt?. Addr<on-Wesley.200ì.

[6] Grecnfield, Jâck; Slìor1, K€ith. SoflwaÍe
Factories: Assembling Applications with Patlenls,

' C.crÍly d.fining rhe reàsôn for ìhc clrbo'itron or

each model (modeling for communication, model;ng
r.Í documentâtion) ìrndedines the costôen€fit of
modeling ând establishes clcar rules to d€fine
rÌrodel'ng scop€ and its place in th€ developm€nt

,\giÌe processes know thât they âÍe noÌ useful in any
situâtion. They cleâÌly stâte that they sbould be used
rn nor \ery biB t'uje.rc rr wt.h changc rs an

important Íequirement.

DeÌaying pâÌt of ú€ modelins effort to th€ end of the
project (rnodcÌing to commì.ìnicate to úe mâintenance
tam) doesn't sound very good, because, in úe end of
lìrc project, usuâlly Ìhe team is commitied with other
piojecls or with solving problems of úe present
project. Not documenting at all is whât usually
lÌrppens if we thìnk that modeling is just us€fuÌ for

I3l cnucizes XP's approach âbout úe definìdon of â
softì,'are architecture (thât conc€pt is absent of XP
!ÌÌd is cridcized by it). The establish.nenr oísofrwaÍe
,rlh;Ìecture in rhê inirial phases ofa project is usetuÌ,
Ìo stimulate the use of mature patrems and to define
lcntraÌ and complcx asp€cts that it would be difficult
rD charge Ìater. Usjng UML diagrams is ÌrsellrÌ ibr
(lìose comfoÌ1able wirh them-
[1] argucs that the âgiìe processes approach works
\'"11 for hÌehly quâlified teams. Alúough the agile
lÌocesses don'r inrend to reach all rhe deveìopers
rorrnìunili, this queslion is a weakn€ss when we
tinsider â broâder peÍspectivc of the sottware
iidLrsry. \ahich cân't counr only on the prolessjonals

-ì
,o.rre on the rop ollhe pyramrd.

' -;.c rpproach dÊnìJnd. rhíìr de\c ofe's n r\r .r
tLde and tÌcep knowledge of the software code
lg:rLn, on a broarler pcrspecrive, it is not fcâsible fírÌ
rrg orgJnìzations, whcre there is âlways â tunìov€r.

Models, Frameworks, and Tools. Ìr'il€y
Publishing ínc 2004.

I7l Smith, John. A Compârison of RUP and XP.
Rational Softwar€ WÌrit€ Paper. 2002.

[8] Astels, David; MilÌ€r, Granville; Novâk,
Miroslav. ExrÍeme PrograrrÌmìngi Guja Prático.
Editora Câmpus, 2002.

[9] Lindvrll, Mikael; Muthig, Dirk; Daenino, ALdo;
Wàllin, Cristina; Stupperich, Michâel; Kiefer,
David; May, John; KãhKónen, Tuomo. Agile
Sofiware Dcr€lolmenr rn I drge O'gdni./drionç.
IEEE Computer. Dccember 2004. ps 26-ll.

Il0l [AM. 2005a]. Asìle Modelins. Agile Modeling
and extreme ProgÌâmming.

(ÂM).

http:/ xww.a!:iÌemodelinÊ-coÌÍì/essavs/âsileModel
insXP.htm.

[1 l] [AM, 2005b]. Asile Modelins. Overvi€w ofTbe
VaÌues, PrincipÌes, and Practices of Agile (P

gil

di:
lrir

Modelins
httìr://www.aeilemod€line.com/#ValuesPrìnciples
Practiccs.

Il2l MDA Guide Version 1.0.1. Object Managem€nt
Group. Needham, Mass., EUA, juty 2003.
Available in .bjtplô4lrry.slrc.e.rc&c!.
biddoc/ome/03-06-0 LpdÈ.

tu,
Proceedings of the

4th WSEAS International Conference on
SYSTEM SCIENCE and ENGINEERING

-ÍcossE 200s-

Rio de Janeiro, Brazil, April 25-27,2005

ISBN: 960-8457-18-1

,oç.,io

tr '\.'''
'''

Copyright O WSEAS 2005. hrrpr/Ìvrì Ìl.s(eâ(.org

