WSEAS TRANSACTIONS ON COMPUTERS

Issue 6, Vol. 4, June 2005 1SSN: 1109-2750 621

1 Introduction
The OMG’s MDA (Model Driven Architecture)

proposes automatic code generation from UML

models, independently from the implementation
platform. To meet this goal, MDA defines an
approach to IT system specification that separates the
specification of system functionality from the
specification of the implementation of that

functionality on a specific technology platform [1].

The MDA process is divided in 3 models: the PIM

(Platform Independent Model), a system’s model that

has no platform considerations; the PSM (Platform

Specific Model) that is generated from PIM and

considers the platform’s technological issues, and the

Source Code, generated from PSM.

For the model-driven software development
vision to become reality, CASE Tools must support
this automation [2].

This paper proposes that the MDA CASE Tools
must be elaborated considering the commonalities
between the different products [3], which raises two
points:

o Its is advantageous to the developer that MDA
Case tools provide solutions that could help
defining/implementing the commonalities of
these applications, reducing the effort in
modeling software;

Effort Reducing in Software Modeling on MDA Approach

José Eduardo Belix
Sérgio Martins Fernandes
Selma Shin Shimizu Melnikoff
Edison Spina

The Department of Computing and Digital Systems Engineering (PCS)
University of Sdo Paulo - Polytechnic School
Av Professor Luciano Gualberto, travessa 3, n°158 - Sala C2-42.
Cidade Universitaria - Sdo Paulo - SP
CEP: 05508-900
Brazil
(jose.belix; sergio.martins; selma.melnikoff; edison.spina)@poli.usp.br

Abstract: - The MDA (Model Driven Architecture) is an approach for software development that has the ability
to produce applications for virtually every middleware platform from the same base model. All the MDA
development projects start with the creation of a Platform Independent Model (PIM), which expresses only
business functionality and behavior, abstracting away platform-specific details.

This paper focuses on defining recommendations to help reducing the necessary effort to represent the PIM
model, by the adoption of predefined solutions for the software to be generated. The paper also presents a
taxonomy for these predefined solutions and the consequences of their use, pertaining to modeling effort.

Key-Words: - MDA, MDD, CASE TOOLS, Generative Programming, Software Architecture, Abstractions.

e Considering that these provided solutions
establish some parts of the software design,
developers must direct their efforts to what
really needs design definitions.

1.1 Taking Decisions

Conscientiously or not, a set of decisions is
always taken in a software development effort. These
decisions are related to high-level software issues,
like the choice of an architectural pattem; or with
more specific issues, like data persistence.

These decisions represent solutions with
different characteristics. Focus on easiness of
maintenance by separation of concerns can take to the
decision of adoption of the Layers architectural
patten. An architectural pattern, “describes a
particular recurring design problem that arises in
specific contexts, and presents a well-proven generic
scheme for its solution” [4]. The pattern provides
solution, but provides no implementation.

Different decisions can also result in solutions
with complete or partial implementation. For
example, the decision about the presentation of an
application can lead to the adoption of the STRUTS
framework (Apache Software Foundation), which
provides design and code.

622 WSEAS TRANSACTIONS ON COMPUTERS

Issue 6, Vol. 4, June 2005 ISSN: 1109-2750

1.2 A Taxonomy for Solutions
[5] presents a taxonomy to classify these issues.
The taxonomy is about abstractions, which are
defined as “composed new solutions from existing
ones to solve problems expected to be encountered
during system refinement”. The taxonomy is:
e White-box abstraction
Provides a description of the solution, but no
implementation. It can be applied in many
contexts.
Patterns are examples of white-box abstractions.
e Black-box abstraction
Provides a fully implemented solution that is
completely opaque to the user.
Web services, components or features supplied
by libraries or compiled languages are generally
black-box abstractions.
e Gray-box abstraction

Represents the intermediate level: provides -

source code and design for a partial or complete
implementation of the solution, which can be
completed or modified when needed.
Frameworks are examples of gray-box
abstractions.

1.3 The Impact of the Presented Abstractions
on Modeling Effort
The presented taxonomy basically classifies
abstractions in a spectrum that ranges from no
implementation at all to fully implemented solution.
By providing a completely implemented
solution, a black-box abstraction is inflexible and can
only be applied to problems that require that exact
solution. On the other hand, white-box abstraction
provides no implementation but a description of the
solution. The user of this latter type of abstraction
studies the provided description of the solution and
applies this solution when necessary. The user
supplies its implementation and can tailor this
implementation in any way necessary for the problem
at hand. So, the less implementation an abstraction
provide, the more generic it is and can therefore be
applied in many contexts, supporting variations [3].
Because of its intrinsic differences, this paper
states that the different abstractions perform different
roles on reducing modeling efforts.

1.3.1 Effort Reducing Caused by White-Box

Abstractions

Being only specification, not implementation,
white-box abstractions have a great scope of
application and are mainly concemed with
architecture solutions.

Architecture patterns, for example, support the

construction of software with defined properties,
providing a scheme for a generic solution to a family
of problems, rather than a prefabricated module that &
can be used “as is” [4].

The modeling effort economy caused by the
white-box abstractions would be provided by tool’s &
automatic application of them, resulting in software &%
structure without manual intervention of the user. Of £
course, user’s reasoning is required to determine if §
the tool’s predefined white-box abstractions are §
suitable for the software to be built. A

Being concerned with high-level architecture §
definitions, the white-box abstractions greatly §
constraints the possible black and gray-box §
abstractions. =

1.3.2 Effort Reducing Caused by Black-Box |
Abstractions]
As mentioned, black-box abstractions are }
inflexible and must be used “as is”. They allow no §
further design or behavioral consideration, but on the |
other hand, they require no modeling effort because §
all the structure and behavior have been already §
defined.
Components are example of Black-box]
abstractions and can be used for business rules
solution or technical issues solution, this latter inside £
a specific architecture context. L
® Business Rules Solutions
When modeling software, architects may want
to use existing built component, which may §
address project requirements, e.g., a component §
to calculate an asset value. In this case it is not §
necessary to model the component (it already §
exists), but only to model the software to use §
this component. ;
Some platform problems can occur in this reuse §
attempt. For example, during a .Net technology }
software development, there could exist 2 @
component that exactly fulfills a particular §
service, but is written in CORBA. In this case, it §
is necessary to construct appropriate wrapper
code to adapt the component to the actual §
environment [7]. The CASE tool could provide 8
this wrapper. :
Appropriated interface also could be provided &
by the tool for web services connections. -
o Technical Issues Solutions -.
Following the idea of provide the maximum &
number of ready-to-use solutions to the user of 2 &
MDA CASE Tool, and also focusing on
reducing effort to model software, the tool can
provide abstractions to solve technical issues g
pertaining to specific development strategies
For example, DAO-based classes normally §

WSEAS TRANSACTIONS ON COMPUTERS

Issue 6, Vol. 4, June 2005 ISSN: 1109-2750 623

require a component to provide DB connections
and SQL Statement execution. Such component
could be supplied and automatically applied to
the software by the MDA CASE tool.

In the same way, a CASE Tool can also apply
features provided by programming languages.
For example, Disconnected Recordset (ADO in
Net projects or CachedRowSet in Java projects)
is a feature supplied by programming languages
that enable the access of persistent data. With no
need of extra implementation, it also can be used
as a medium to transport data between layers or
to help preventing problems caused by
uncontrolled multi-access. However, it is only
possible to take advantage of these two latter
characteristics if the application’s architecture
allows it. This restriction is caused by the
limited scope of black-box abstractions.

The point is that the use of black-box abstraction
aves on modeling effort because it is not necessary
o model the abstractions — they already exist
- beforehand. More important, the use of black-box
bstractions represents an economy of modeling not
nly for structural aspects of the software, but also
' for the behavioral aspects.

The representation of behavioral aspects is the
- weak point of UML [8].

_ In the specific case of black-box abstractions to
- solve business rules, the user must know the
- abstractions and must know the context in which that
| abstraction works.

: For technical issues black-box abstractions, the
. scenario changes: the tool must automatically apply
- these abstractions, based on the architecture context,
In a way that the user does not have to know the
bstractions and does not have to verify if the
- architecture choices are suitable. It is axiomatic that
_the overall decisions taken by the tool must be
- convenient for all the applied abstractions.

3.3 Effort Reducing Caused by Gray-Box

Abstractions
Being a partially implemented solution, the
. gray-box abstractions allow code and design changes.
: As mentioned, frameworks are examples of

Gray-box abstractions. A framework is a reusable
. design of all or part of a system. It is the skeleton of
~an application that can be customized by an
- application developer. A framework provides reuse of
- design and reuse of code [6].
_ Most commercially available frameworks seem
_ to be for technical domains, such as user interfaces or
- distribution [6].
Similar to the black-box abstractions, this paper

states that, based on its own embedded architecture
strategy, a CASE tool can automatically apply these
technical domains gray-box abstractions. This
represents an opportunity of modeling effort
reduction, but even more interesting, having a CASE

-tool automatically applying a framework is a way to

avoid the costs of the learmning curve of that
framework. “Frameworks are more customizable than
most components, and have more complex interfaces.
Programimers must learn these interfaces before they
can use the framework” [6].

In fact, the user does not have to know about
which gray-box abstractions are supposed to be
applied by the CASE tool to cope with technical
issues.

Also similar to black-box abstractions, gray-box
abstractions (frameworks) can be used to help the
user in business modeling task, but in this case the
framework understanding is a pre-requisite for
evaluating its applicability [9].

Frameworks are derived from business domain
and are the key to successful design and code reuse in
object-oriented software development [10].

Business domain gray-box abstractions can be
used for PIM’s pre-configuration.

2 A Practical Example

A MDA CASE Tool can be configured to
generate business applications from a set of design
decisions. As an example of solution that does not
provide implementation (white-box abstractions), the
tool must generate software based on the Layers
Pattern [4] in three-tier configuration, using DAO
Pattern [12] for data persistence. The separation of
concerns in layers must be done in the following
manner:

e Uppermost layer: business entities;
o Intermediated layer: DAO classes;
e Lowest layer: access to the persistent data.

DAOQ classes must implement a CRUD-based
interface [13], and the Use-Case Controller pattern
[14] [15] must be used to map the requirements
specifications to the implementation.

2.1 Applying the White-Box Abstractions

The above design example will be used for the
development of online retail sales software. In the
Use Case “Customer Maintenance”, there is a
customer information query, which selects customer
by ID and validates the dealer’s password (two
business objects interacting to allow this query). The
conventional representation of this behavior is;

624 WSEAS TRANSACTIONS ON COMPUTERS

|

Issue 6, Vol. 4, June 2005

X

ISSN: 1109-2750

: Customer ~ Dealer

UCMaianusmmer\

1: getinfoByID() |

1
1
1
1
1
.
.
¥

2: getinfoByID()

3: getinfoByKe:

I

B; getinfaBylD()

1

- Customer . _Acess
CustomerDAD
/0
, 4: retrieve() h_
' ' 5] Fonnect()
close()

S I |

h 4

B getlnfuBng_y:()

]
1
"
[
1
1
1
[
i
"
[
]
1
'
1
]

10: retriave()

11

connect()

: close()

Figure 1 - A Use-Case path

The above sequence diagram (figure 1)
represents the necessary messages for this query
within the design context. The DAO and ACCESS
classes, for example, are consequence of the adopted
decisions.

Now, suppose a MDA CASE tool able to
automatically apply the mentioned set of white-box
abstractions. In this same example, the tool would be
prepared to understand that every persistent class
would have a corresponding DAO class, responsible
for any request related to persistent data. Also defined
by abstractions, the DAO classes would inherit a
CRUD interface and would use a class (ACCESS
class) for SQL statements execution.

Despite the fact that the software architecture
remains the same, having a MDA CASE tool that
automatically applies this set of white-box
abstractions will allow the user to only specify the
following PIM behavior for the same sequence
diagram:

~Customer UCMaint?:ustcmar|

| 1. etivoByDY) |

U

:Desler : Custome

2 getfoByD{)\

1

3: getinfdByiD()

1
fl
1
'
'
'

>U
1
'

Figure 2 - The necessary PIM
representation for sequence diagram

With the behavior presented in figure 2, and
applying the defined white-box abstractions, the

WSEAS TRANSACTIONS ON COMPUTERS

Issue 6, Vol. 4, June 2005 ISSN: 1109-2750 625

MDA CASE Tool would be able to generate a PSM
- sequence diagram similar to figure 1.

: But even such diagram does not contain all the
~information for a CASE Tool to generate the
‘necessary code. Despite being representative to the
umans’ cognition, a method called “getinfoByID”
: represents nothing to a computer. With only the
- white-box abstractions, it would be necessary to
- represent the detailed behavior of the method in
UML.
Another possible way to solve this problem is by
pplying solutions that really implement source code,
.g. black and gray-box abstractions.

2.2 Applying the Black and Gray-Box
Abstractions

Once the CRUD principles were applied, the
source code for persistence method implementation
could be partially written and be automatically
configured for the CASE Tool to any specific class
(the implementations are all very similar), in a gray-
box abstraction case.

To configure the variants in this partially written
code, parameters could be provided by the CASE tool
and XVCL (XML-Based Variant Configuration
Language - a general-purpose language for
configuring variants in programs and other textual
assets) [11] could be used to generate the code.

The ACCESS class (responsible for DB
connection and SQL statements execution) would not
demand further parameterization and could be
automatically implemented (black-box abstraction).
With these two latter abstractions, the CASE Tool

would be able to completely implement all the
persistence methods.

3 Modeling and Constraints

3.1 Reasoning about Modeling

In the example presented in this paper, (figure 2)
the developer would only describe the Use Case to
the point where he/she could really decide about the
application design. It is important to note that — in the
approach presented here - many design decisions are
left to the tool. There is no reason to model what is
already implemented/defined and no further
consideration is required. “When deciding how to
model something, determining the correct level of
abstraction and detail is critical to providing
something that will be of benefit to the users of the
model. Generally speaking, it is better to model the
artifacts of the system - those ‘real life’ entities that
will be constructed and manipulated to produce the
final product. Modeling the internals of the web

server, or the details of the web browser is not going
to help the designer and architects of a web
application” [16].

3.2 Constraints are Useful

A MDA CASE Tool customized to work within
the design decisions presented in this paper would not
work when modeling a digital signal processing
system, which uses the Pipes & Filters architecture
pattern [17]. On the other hand, the adopted solutions
greatly facilitate the business application modeling
task, as suggested in this paper.)

Aided by the present abstractions, the tool user
can develop a PIM strictly focused on business, and
the tool would provide the technical solutions,
automatically creating a PSM based on best practices.

The tool could provide a default configuration,
which could be customized by the user. It would be
useful if the tool had its own decision tree -
configured beforehand - that could offer consistent
choices. There is no point in choosing J2EE with
container-managed persistence and Hibernate for the
same project, but there is some room for reasoning.

It is recommended that tools be elaborated with
different templates, each one customized for different
software development conditions. Even in business
applications, it would be useful to have templates for
Net with DAO strategy, or J2EE applications, etc...

4 Conclusions

This paper supports the need of MDA CASE
Tools to incorporate predefined solutions, which can
be classified in a spectrum varying from just
specification to fully implemented code. These
solutions constraint the scope of possible domain
problems where tools can. work but, on the other
hand, they aim to specialize the tools in a way to

reduce the amount of necessary efforts to model
software.

References:

[1] OMG. “Model Driven Architecture (MDA).
Document Number ormsc/2001-07-01” Object
Management Group, july 2001.

[2] Sendall, Shane; Kozaczynski, Wojtek. “Model
Transformation: The Heart and Soul of Model-
Driven Software Development” IEEE
SOFTWARE, Volume20, Issue5, pg 42-45,
Set/Oct 2003.

[3] Bosch, Jan. “Product-line architectures in
industry: a case study”. Proceedings of the 21st
international conference on Software engineering.
May, 1999.

626 WSEAS TRANSACTIONS ON COMPUTERS Issue 6, Vol. 4, June 2005

ISSN: 1109-2750

[4] Buschmann Frank; Meunier Regine; Rohnert
Hans; Sommerlad Peter; Stal Michael. “Pattern-
Oriented Software Architecture, A System of
Patterns”. John Wiley & Sons Ltd., Chichester,
UK, 1996,

[5] Greenfield Jack; Short, Keith. “Software
Factories: Assembling Applications with Models,
Frameworks, and Tools”. Wiley Publishing, 2004.

[6] Johnson, Ralph E. “Frameworks = (Components
+ Patterns)”. Communications of the ACM, Vol.
40, No. 10. October 1997.

[7] Billig, A; Busse, S; Leicher, A; Siif3 J. “Platform
Independent Model Transformation Based on
Triple”. Proceedings of the 5th
ACM/IFIP/USENIX international conference on
Middleware, 2004.

[8] Kleppe Anneke; Warmer, Jos; Bast, Win. “MDA
Explained: The Model Driven Architecture.
Practice and Promise”. Addison-Wesley — Object .
Technology Series, 2003.

[9] Bosch, J; Molin, P; Mattsson, M; Bengtsson, P.
“Object-Oriented Framework-Based Software
Development: Problems and Experience”. ACM
Computing Surveys (CSUR). March 2000.

[10] Baumer, D; Gryczan, G; Knoll, R; Lilienthal C;
Riehle, Dirk; Ziillighoven , H. “Domain-driven
framework layering in large systems”, ACM
Computing Surveys (CSUR). March 2000.

[11] Jarzabek, S; Zhang, H; Swe, S. “XVCL: A
Tutorial”. Proceedings of the 14th international
conference on Software engineering and
knowledge engineering. 2002.

[12] Alur, Deepak; Crupi, John; Malks, Dan. “Core
J2EE Patterns”, Sun Microsystems Press. 2001.
[13] Brandon, Daniel. “CRUD Matrices for Detailed
Object Oriented Design”. Journal of Computing

Sciences in Colleges. December 2002.

[14] Aguiar, Ademar; Souza, Alexandre, Pinto,
Alexandre. “Use-Case Controller”. EuroPLoP
2001.Sixth European Conference on Pattern
Languages of Programs. 2001.

[15] Evans, Gary. “Getting From Use Cases to Code
Part 1: Use-Case Analysis”. IBM — The Rational
Edge. July 2004. Available on <http://www-
106.ibm.com/developerworks/rational/library/cont
ent/RationalEdge/jul04/5383.pdf>.

[16] Conallen J. “Modeling Web Application
Architectures with UML”, Communications of
ACM, October 1999, Vol 42, n° 10, pgs 63-70.

[17] Frangois, Alexandre R.J, “Software Architecture
for Computer Vision: Beyond Pipes and Filters”.
July, 2003, Available on
<http://iris.usc.edu/~afrancoi/pdf/sacv-tr.pdf>.

WSEAS TRANSACTIONS
on COMPUTERS

Issue 6, Volume 4, June 2005
ISSN 1109-2750 . http://Www.wseas.org

Solving the Euclidean Steiner Tree Problem Using Delaunay Triangulation
Milos Seda

SystemC Co-Design for Image Compression Using a Distributed Arithmetic Method
Mildred C. Zabawa, Malek Adjouadi, and Naphtali Rishe

Conflicting Perspectives on Architecting Software - In Search of a Practical Solution
Sasa Baskarada, Frank Fursenko

Building Personalised Voices Using Unit Selection Approach
Hira Sathu, Ranjana Shukla and Jun Li

Scheduling and Control of Flexible Manufacturing Cells Using Genetic Algorithms
Antonio Ferrolho and Manuel Crisostomo

Architecture-Centric Model-Driven Development with s-ARL
Flavio Oquendo

A Novel Interdisciplinary and Collaborative CAPP for Discrete Manufacturing
Ionel Botef and Barry Dwolatzky

Towards a Decision Support Studio for Business Engineering Enabled by Mobile Services

Yan Wang

Equivalent Transformations for Program Schemes Augmented by Invariant Parallel Functions

Mark Trakhtenbrot

Phoneme Classification and Phonetic Transcription using a New Fuzzy Hidden Markov Model

Farbod Hosseyndoost, Mohammad Teshnehlab

Classification of Arrhythmia Using Machine Learning Techniques
Thara Soman, Patrick O. Bobbie '

How to Achieve the Stock Control of a Corporation
Marcos Antonio Masnik Ferreira

A Performance Analysis on Hooking Method for Fault Detection for a Multimedia
Collaboration Environment
Eung-Nam Ko

471

477

485

494

502

511

521

329

535

541

548

553

559

Vector Feature Space Partitioning: Efficient Aerial Image Registration Algorithm for
Autonomous Navigation of Aerial Vehicle
Hafiz Adnan Habib, Muid Mufti

Knowledge Indexing and Pattern Similarity Measure for Information Organization
Magdy Aboul-Ela

- A Model-Theoretic Semantics for Default Logic
Namid Obeid

XML Family Skills used by FLoWPASS
Nascimento Rogerio, Martins Joaquim, Pinto Joaquim

Software Process Supervision
Zhang Kai

An Improved Moderation Technique for Fusion of K-Nearest Neighbor classifiers
Fuad M. Alkoot

Structural and Smoothing Parameter Optimization of Probabilistic Neural Network
through Evolutionary Computation and its Usage in Odor Recognition System
Benyamin Kusumoputro and Herry

A News Domain Topic Detection System
Cormac Flynn, John Dunnion

Effort Reducing in Softwaré Modeling on MDA Approach
Jose Belix, Sergio Fernandes, Selma Melnikoff, Edison Spina

Measuring Data Processing from Embedded Systems
Zdenek Machacek, Vilem Srovnal

Estimation of Speed, Rotor Resistance and Rotor Flux of an Induction Motor using Neural

Networks and Neuro-Fuzzy Techniques
K. E. Hemsas, M. Ouhrouche, N. Khenfer, S. Leulmi

A New Approach for Evaluation Fault-Tolerant Mobile Agent Execution in Distributed Systems

Hojat allah Hamidi and K . Mohammadi

A New Approach to Fault -Tolerant Mobile Agent Execution in Distributed Systems
Hojatollah Hamidi and K . Mohammadi

R

ISSN 1189-2750

566

372

581

591

397

603

609

615

621

627

637

643

649

EDITORIAL BOARD

EDITOR-IN-CHIEF

MASTORAKIS N., Military Institutions of University Education, Hellenic Naval Academy,
Department of Computer Science, Hatzikyriakou, 18539, Piracus, Greece.

ASSOCIATE EDITORS

ANTONIOU G. Montclair State University, NJ, USA
LAPLANTE P. Penn State University, PA, USA
LOUCOPOULOS P. ,UMIST, Manchester, UK

OJA E, Helsinki University of Technology (HTU), Finland
SAGE A, George Mason University, Fairfax VA, USA
YAGER R., Iona College, New Rochelle, NY, USA

TOPICS: Computer Languages, Software Engineering, Data §t1uctures, File Structures and Design, Data Bases, Compilers,
Knowledge and Data Technology, Pattern Analysis and Machine Intelligence, File Structures for on-line Systems, Operating Systems,
Parallel and Distributed Systems, Information Systems, Complexity Theory, Computing Theory, Numerical and Semi-Numerical
Algorithms, Object-Oriented Programming, Parallel Programming, Computerised Signal Processing, Computer Graphics,
Computational Geometry, Machine Vision, Computer Elements, Computer Architecture, Computer Packaging, Fault Tolerance
Computing, Mass Storage Systems, Microprocessors and microcomputers, Multiple valued Logic, Numerical Analysis, Finite Element,
Genetic Algorithms, Game Theory, Operations Research, Optimization Techniques, Real Time Systems, Virtual Reality, Computer
Algebra, Symbolic Computation, Simulation, Pattern Analysis, Machine Intelligence, Adaptive and Learning Systems, Classification,
Identification, Chaos Fractals and Bifurcations, Analysis and design tools, Simulation, modelling, Emulation, Visualization, Digital
Libraries, Hardware Engineering, Programming Techniques in Communications, Networks, Management and Economic Systems,
Multimedia, Video technologies, Simulation Techniques Tools, Software for Communications Development and Simulation, Social
Implications of Modern Communications, Soft Computing and Communications, Smart Interfaces, Intelligent Systems,
Supercomputers and Supercomputing, Internet and Internet Computing, Intelligent Agents, Mobile Computing, E-commerce, Privacy
Problems, Hardware/Software Codesign, Cryptography, Computer/Communications Integration, Education,

HOW TO SUBMIT: http://www.wseas.org, http://www.worldses.org

SUBSCRIPTION: The subscription rate for each journal is 100 Euros (per year) for individuals
and 200 Euros (per year) for institutions or companies.

FORMAT OF THE PAPERS: http://www.worldses.org/journals
ISSN: 1109-2750

WSEAS
USA Office European Office I European Office 11
Prof. George Antoniou, WSEAS Prof. Nikos Mastorakis,
Montclair State University, Ag. I. Theologou 17-23, Military Institutes of Univ. Education,
Computer Science 15773, Zographou, Hellenic Naval Academy,
Department, Athens, GREECE. Department of Computer Science,
New Jersey, USA. Tel: (+30) 210 7473313 Terma Hatzikyriakou, 18539,
Fax: (+30) 210 7473314 Piraeus, GREECE.
http:/’www worldses.org http: .WSeas.or http://www. wseas.org

WSEAS E-LIBRARY: http://www.wseas.org/data
WSEAS CHAPTERS: http://www.wseas.org/chapters

| Each paper of this issue was published after review by 3 independent reviewers —I

