724

Conf. on Software Eng. Research & Practice (SERP'05)

QFD applied to software development

The 2005 International MultiConference In
Computer Science & Computer Engineering

Las Vegas Nevada, USA, June 27-30, 2005

Eng. Lélis Tetsuo Murakami
University of Sdo Paulo
Polytechnic School

Abstract — Since the initial development in
Japan, in the late 1960°s and early 1970's, the
industries had used QFD — Quality Function
Deployment a tool of TOM - Total Quality
Management, to products manufacturing. In
1980’s this method was rapidly spread through
out the USA and several countries in Europe,
Australia and Brazil. The fundamental aim of
this technique is to obtain and understand the
needs of the customers and transform them into
a detailed specification that is used along the
process of the product manufacturing. The idea
of using QFD technique as it is, to software
development is not easy or convenient, since
there are differences between product
manufacturing and software development.
However, it seems like a good procedure, to
understand the concepts of QFD and apply
them to software development where
appropriate, in comjunction with other
strategies such as CMM — Capability Maturity
Model. This paper is an attempt to describe
how to implement quality into sofrware using
the available tools. At the end of this paper a
real case experience in a medium size
automotive industry is presented.

Keywords: QFD, SQFD, TOM, Software
Quality.

1. INTRODUCTION

An efficient and maybe the best method to
determine the customer requirements of a
specific product or service was created in Japan
in the late 1960°s and early 1970%s. It was
named QFD — Quality Function Deployment
and is part of a TQM - Total Quality
Management. During the decade of 1970, this

Prof. Edison Spina, PhD
University of Sdo Paulo
Polytechnic School

Prof. José Sidnei C. Martini, PhD
University of Sio Paulo
Polytechnic School

technique was improved and became a very
strong and reliable tool, spreading across the
world, more significantly in the USA in the
following decade. This method aims essentially
to collect and understand the customer needs or
expectations about a specific product,
transforming them into a list or requirements
used along the product manufacturing process.
As a result of this strategy, a reliable product
with desired quality is obtained providing the
customer satisfaction. QFD goes more deeply
trying to find out more requirements not related
by customers through interviews, but inferred
during the process, in order to provide some
characteristics to the product that will cause a
positive surprise to customers, a very useful
strategy to improve the customers’ satisfaction.
The same process could be used to establish
quality in services. This method could be
applied to software development, but some
considerations are required. The purpose of this
paper is to describe alternatives to improve
quality of software, to comment the
effectiveness and applicability of several
techniques and then, at the end suggest a
practical way to guarantee the objectives.

2. THE PRACTICE OF QFD

QFD history was originated in the late 1960
and early 1970 in Japan. At that time, the
Japanese industries were performing the
“copy” manufacturing that is, use existing
products, to create another one. In this status
quo, QFD concept was created to a new
product development. Akao & Manzur in [1]
describe in details the history of QFD evolution
referring to the past, present and future of this

Conf. on Software Eng. Research & Practice (SERP'05)

method. Akao after having created this method,

observed these two points:

¢ The importance of quality in the product
manufacturing is a fact. However, there
was no available bibliography about the
theme and how it could be provided;

* The manufacturers had already used
worksheets in the quality control process,
but after the product manufacture.

and concluded with the question:

Why could not we note the critical points of
quality control process prior to production
start up?

The term QFD — Quality Function Deployment
was ornginated from the Japanese term
mEEERIR (VGALDEDI TAdvy
or (HIN-SHITSU KINOU TENKAI). The
translation of this term was modified over the
time by the author. In 1972, Akao translated it
as Quality Function Evolution and in 1983,
Masaaki Imai suggested other translation
arguing that TENKAI would be better
translated as Deployment, and Akao agreed
with him.

QFD method was spread significantly through
out the USA and other countries beginning at
the 80's. A survey sponsored by Tamagawa
University and University of Michigan on
recent QFD applications shows that 68.5% of
American companies use QFD in their
activities and only 31.5% of Japanese
companies use it.

There are many issues in the literature about
QFD and its application in product
manufacturing. Lai-Kow Chan and Ming-Lu
Wu [2] made an important work compiling
‘many articles about the subject, revising 650
papers about QFD from several sources.

The bibliography of QFD applied to software
development is poorly related. There are
differences in producing products and
producing software, as well as there are
differences to specify products and specify
software. Moreover, a customer requirement of
a product is clear, however, it could be
subjective in case of software. A software
could attend a process need and also the user.
In this case we can say that the user is attended
indirectly and so, the QFD method could not be
easily applicable. Barnett & Raja in [3] justify
the few bibliography of QFD applied to
software development arguing that the

companies after using the method obtain
significant market advantage and so, they
maintain the QFD experience proprietary,
hiding the knowledge to their own use.

Other authors such as Mercedes Ruiz, Isabel
Ramos and Miguel Toro in [4] assume a
different point of view referred to software
development process, suggesting a strategy of
quality assurance, based on modern practices
of system modeling.

3. QUALITY IN SOFTWARE
DEVELOPMENT

A software as a product could be considered in
the same way as a manufactured product. Its
quality could be perceived as it performs its
functionalities with efficiency under the
customer point of view, Nevertheless, the list
of functionalities could be large and so, one
difficulty is to guarantee that all of them and its
combinations will work. The traditional
software development process suggests the use
of several strategies of test to verify if all
functionalities are working well. However, the
application of this procedure becomes very
hard when the number of functionalities or its
combinations assume very high values.
Therefore, the guarantee of software quality is
inversely proportional to the number of
functionalities or its combinations. If a given
software should sum 2 numbers, probably it
will do it well presenting a reliability of 100%.
However, the Windows XP software, which
has millions of functionalities will have several
operational difficulties as predictable. Certainly
this software was made by groups of many
software engineers and programmers and the
probability of problems occurrence is high and
it depends on the software ‘gigantism’.
Although the problems exist, it is not correct to
imply that the quality was refused. Referring to
software development, there is another point to
consider, that is, if some software has a wide
spread in the organization and has poor quality
it will cause undesirable damage as a
presumable consequence.

4. QUALITY APPLIED TO SOFTWARE
DEVELOPMENT PROCESS
If there is no possibility to inspect all range of

software functionalities there is a strategy to
guarantee that part of it will work correctly.

725

726

Conf. on Software Eng. Research & Practice (SERP'05)

This idea is quite usual and similar to “divide
and conquer” that is, let us divide the problem
into sub problems and try to inspect them. We
can divide the original problem into many
levels and call them components or better
software component. This later could be
considered as part of the software, which has
general functionality and could be used as part
of other software. The maturity of these
components could be provided along the time,
in a continuons improvement as suggest by
CMM Methodology. Banker e Kauffman [5]
argued that the level of reuse of a component is
a way to measure the quality of software
development process. If we invest in
component manufacturing, we are improving
the reuse of them and as a consequence we are
improving the quality of the software
development providing high quality software.

Barnett & Raja in [3] mentioned some aspects
that would not be so correct. They say that the
current techniques of software development do
not have a methodology to specify the user
requirements and more, they emphasize that
the actual techniques are inefficient to
transform the needs of users into software
specifications. If this is true had we developed
bad software until now? The answer is no, of
course. The use case techniques from Software
Engineering correctly model the required
functionalities of software, transforming them
into software specifications that are used by
developers. There is another complicate point
when the authors affirmed that the user
requiremnents were collected through interviews
and the software specifications were modeled
according to the developer point of view. There
is no problem with the way the needs are
evaluated through interviews. It is done by
QFD method too. The mistaken point would be
the affirmation that the software is modeled by
the developer point of view. It is not true. The
software should be developed according to the
point of view of the end user and should be
approved by him. They also say that software
development does not have repetitive
production process. Again, it is not true. Many
pieces of code or functions or templates or
modules have general use and are replicated as
many times as needed in a repetitive
production process. This procedure is
becoming more and more frequent. As a way to
make a comparison let us suppose a car
factory. They produce cars assembling several
parts of them. In the same way, we produce

software joining parts of them and it is
common to mention as software factory.
Another paper mentioning quality in
development process is written by Mercedes
Ruiz, Isabel Ramos and Miguel Toro [4]. The
main concept of this paper is to valuate the
quality through statistical process using a
dynamic integrated framework, simulating the
software development and maximizing the
capability of the process.

5. RELEVANT ASPECTS

There is no doubt that there are enough
differences between products and software
manufacturing making the use of QFD
impracticable in completeness. However many
concepts of this technique are useful, mainly to
identify the requirements. The matrix HOQ -
House of Quality could be used partially to
identify and prioritize the software
requirements under the user point of view.
Although QFD is widely spread and successful
when applied to industries, it does not mean
that this methodology can be applied to
software development with the same success.
More than this, it is not true that the software
development will be damaged if QFD is not
applied. Software engineering and OO methods
always had aimed the excellence in software
design. These techniques working together had
provided quality in software development
through the large use of methods, patterns and
management process. The strategy of investing
in software development process to obtain
quality seems to be adequate and the most
successful.

6. FOCUSING QUALITY

Software quality is a characteristic that could
appear differently and depends on several
factors. The quality level established would be
a strategic parameter. However, some
procedures should be adopted in order to
maximize the quality level.

6.1 PATTERNS AND REUSABILITY

The wuse of patterns in the software
development process has several positive
aspects. The development process got high
performance because no time is lost to think
and decide which style will be used or what
language will be selected or how the code
should be developed. The more patterns are

Conf. on Software Eng. Research & Practice (SERP'05)

clear the more high performance is obtained.
When we talk about patterns it is convenient to
select tools and communication language to
promote the link between all actors of the
development process. Well done documents of
system, follow-up, failure statistical analysis,
support, observed failures etc. are necessary to
manage the organization process. Coding
patterns also drive to improve programming
activities and certainly promote the economy of
many hours of maintenance. The most
important advantage of using patterns is the
transparency of the development process,
making this activity independent of the
programmer. It is strongly recommended to
adopt a hard administration to implement a
development procedure based in patterns. If
there is no adequate control, the results
obtained could be inefficient. The IT area has
become one of the most important and strategic
department of every organization which
intends to be competitive in the market.
Actually, it is not imaginable a company
without a strong IT department manipulating
operational data and providing information to
the company’s senior managers, and feeding
the DSS — Decision Support System of the
organization. To improve the risk analysis
process and the decision making, a structured
process is necessary to manage and control the
IT activities of the company in order to
guarantee the investment payback and improve
the organization process. This new IT wave is
called IT Governance. There is no doubt that
the IT technology is needed with all of is
paraphernalia such as PC, networks, hubs,
servers, internet, firewall etc. The point of
discussion is how each company manages his
technical tools. That is why a model like ITIL —
Information Technology Infrastructure Library
has become widely popular in the IT world.
However, few companies have adopted it, but
the concern exists and the diversity of methods
is a fact. ITIL is a collection of best practices
and process of IT services and was created in
the 80’s by CCTA, an agency of British
government. It covers many areas but has the
focus in quality of IT services management
and, if well applied improve the efficiency in
the IT management. Another model called
CobiT is a guide to the IT management
proponed by ISACF — Information Systems
Audit and Control Foundation,
{(www.isaca.org). The CobiT practices are
recommended by IT specialist because it

permits the optimization of investment and
provide a way to measure the results. CobiT is
an independent platform and is ocriented to
business providing detailed information for
business oriented objectives. We must point to
another methodology for IT management
called Rational Unified Process — RUP. It is a
software engineering process and has a main
characteristic of delegating tasks and
responsibilities between the development group
or development company. The main purpose of
this method is to guarantee the production of
software in time with planned cost and with the
quality required by the customer. The RUP
development life cycle is divided into four
phases named: Inception, Elaboration,
Construction and Transition.

CMMI - Capability Maturity Model
Integration is a reference table used to evaluate
the software development maturity. The SEI —
Software Engincering Institute from Carnegie
Mellon, USA, since 1986 has been developing
and improving this evaluation table, which first
version was called simply CMM — Capability
Maturity Model for Software. The objective of
this model is to provide for the organizations a
method of measuring maturity in the software
development process as well as to establish
continuous improvement programs. We can
define maturity as the capacity of replicating
the success now obtained in future projects.

All these methodologies strongly focus the IT
activities management and as a result we obtain
the quality assurance of software. As much the
companies structure themselves and adopt
methods and patterns, the probability of
component reuse will increase. Development
strategies that focus continuous improvement
of software development will quickly reach the
high level of CMM.

6.2 SOFTWARE QUALITY
IMPLEMENTATION STRATEGY

The first point that arises when software
quality is being considered is the strategy to be
adopted. This later could be unique in the
organization or not but one fact is real and
doubtless: assuming maximum quality and
reliability for projects are impracticable.
Instead, good quality and good reliability is
better. To illustrate this idea we may think of
an aircraft which risk of accident we want to
establish as zero. In this case this plane should

727

728

Conf. on Software Eng. Research & Practice (SERP'05)

never fly and obviously, this is undesirable.
The reliability value usually stated in
commercial aircraft is less than 107(-9) failures
per hour. What can be considered are levels of
failures, which should be managed like in
railway and aviation areas where failures are
projected to assume small values, One more
point is important and shall be considered:
assuring a certain quality level requires time
and resources and referring to software, we
must consider the available time to develop it.
In many cases, the available time for software
development commands the quality level and
in the same way, available resources would
establish the quality. In any case, despite all
these difficulties it seems to be important to
maintain the user requirements with no
changes. The strategy to avoid these difficulties
could be managed through taking good
planning, methods, improvement of
performance, components reuse and all kinds
of efforts to maximize productivity and
minimize the consequences assuring the quality
level projected. Actually, companies should
provide good productivity with adequate
quality level as a way to become competitive.
One strategy to implement quality in software
is to invest in efficient IT activities
management such as CMMI, PMI, COBIT,
RUP, etc. as cited before which provide the
necessary organization to execute software
development activities with patterns and
methods. The use of UML — Unified Modeling
Language is efficient and promotes good and
reliable communication between the actors
involved in the development process which
makes the quality level up. As pointed out
before, quality requires resources and what
should be done if a company does not have
enough resources? Working with no quality
strategy is out of question, however, a good
strategy could be made as follows:

a) Use existing IT management practices
defining actors, roles, disciplines, etc,

b) Describe advantages and disadvantages of
the application of each roles and cost
associated.

By doing so, it is possible to analyze and
search what roles the company can perform,
according to its available human and financial
resources, assuming the risk of non executed
activity and controlling the consequences. This
is preferable than quality ignoring strategy and
will reduce the non desirable situation. The
companies will win the market competition as

successful as they invest in generic software
components which are improved every time
when reused, making the continuous
improvement and transforming them in
doubtless high quality software pieces. The
more components are created, the more
improved will be the application development,
In the near future, people will assembly
software instead of coding it. Many templates
will help the developer to quickly create
reliable applications using powerful wizards in
a very short time, Quality in this scenario is an
inherent characteristic and nobody is worried
about it. One more question arises when we
talk about software quality. Frequently
hardware, software and peopleware are not
equalized in terms of quality. I introduce here
the concept of HSP normalization, that is, the
idea of managing the compatibility in these
three axes. It is a simple question but very
often developers forget this issue and make
applications with unbalanced HSP. To
normalize means to increment conveniently the
effort along these axes. For instance, it is not
necessary to use parallel processing hardware if
the software does not use parallel skills in the
software coding. What to say about a complex
algorithm that only the author could understand
and use? What is the need to research and
implement a very complex algorithm to get the
optimal solution if the entry data have a
percentual error of two digits? In this aspect,
the quality is not in the software but in the
good sense of developers who are supposed to
be regardful to these considerations.

7. QUALITY IMPLEMENTATION IN
THE SOFTWARE DEVELOPMENT — A
REAL CASE

Quality issue was the focus of a recent project
in a medium size automotive company in
Brazil belonging to an international holding
Co. The company has up to 770 employees and
had a gross income of about US$ 56 million in
2004. The IT infrastructure is composed of 20
servers to control Databases, Intranet, Mail,
ERP, Applications, Metaframe and Product
Engineering. The network has a set of 280 PCs
and 30 notebooks. The upper bound of server
processor is Xeon 3.06 and Pentium IV 2.8 to

the PCs, both using Windows 2000 operational
system.

Conf. on Software Eng. Research & Practice (SERP'05)

The IT team has 15 outsourced professionals
where 8 of them are directly involved in
software development. As part of an
international group, the company
administration should comply with the group
regulations and patterns and follow the
recommendations resulting from American
laws. The assurance of quality to this company
was implemented considering the existing best
practices of IT administration, customizing
them to the company available human and
financial resources including the compliance
with internal regulations and Sarbanes-Oxley
law (2002). This later was created in the USA
to increase the corporate governance, giving
more responsibility to directors over financial
controls and report delivery procedures.
The necessity of this project was cause by the
objective of the company to regulate the
development process which main guidelines
are:
e To comply with internal regulations of
software development;
e To improve the performance of software
development activity;
¢ To make the process of development
transparent to everyone;
e To attend the project timetable established;
® To implement software quality.
The IT team of the company has used until
now several methods to elaborate the software
projects to supply the demand. However, it still
means a difficulty related to the software
development which did not have the same
systematic procedure, causing inefficiency in
maintenance process and project control. This
variation of procedures generates increases of
rework and costs of maintenance and
development. As the tests criteria and
development parameters were established in
different ways, the evaluation of quality pattern
and the attendance to the user requirements led
them to wrong judgments, mainly due to the
difficulty to implement a reasonable metric
system. Although the procedures of
development adopted by the company were
consistent, there was a necessity to reorganize
and take similar development procedures,
based on current IT practices such as CMM -
Capability Maturity Model and UML — Unified
Modeling Langunage.
To elaborate the methodology, all the
company’s internal regulations and procedures
such as Sarbanes-Oxley, IPS-Information

Policy System, Internal Control etc. were
analyzed focusing IT topics. In terms of
practices, RUP — Rational Unified Process,
PMBoK from PMI, CMMI, COBIT and ITIL
were also considered.

The basic guideline for this project had
consisted in the altendance to internal
regulations and the compliance with the
Sarbanes-Oxley law. The methodology
developed was customized to the company real
conditions referring to the available human and
financial resources. Considering these
assumptions, the objective was to structure a
methodology which makes the best IT
governance possible. The strategy was to
extract from the practices mentioned before,
the relevant points that will lead to the
achievement of targets.

Based on RUP methodology, we used the same
concept of software project life cycle, dividing
it into four phases called Inception,
Elaboration, Construction and Transition,
involving several disciplines. Each phase is
composed of various disciplines and each of
them is a set of activities. For each activity the
actors involved, their correspondent roles, the
responsible actor and the artifacts to be
constructed were defined.

The disciplines considered were:

® Services request;

e Requirement Management;

e Project Management;

® Configuration Management;

e Development;

e Tests;

s Quality.

In order to provide more flexibility to role
attributions and activity executions for IT
members, each of the activities was listed and
described, mentioning its meaning, the actor
who was designated to do it, costs involved and
the results expected. Using all this information,
the company may evaluate each activity and
the correspondent cost, to decide if, this
activity at this cost, which will provide certain
results, is interesting at that moment.

The quality requirement was intensively
considered in the activity of system
specification, using the concepts of QFD to
identify the user (or process) requirements and
transforming them into project specifications.
The methodology established had used
intensively regulations and patterns of software
development process, improving the software

729

730

Conf. on Software Eng. Research & Practice (SERF'05)

quality. The reusability was also focused on
this methodology, developing generic
components when possible and creating the
continuous quality improvement process.

8. CONCLUSIONS

The concept of quality in software could not be
considered as in the product manufacture.
There are several differences between
producing a product and coding a program. To
find out the best color of a product is a simple
task however, to decide the best way to code a
function is not so easy and it requires a deeper
analysis. After all, it is not true that this is the
best function. We can not prove that another
better function does not exist. It is necessary to
distinguish satisfaction and accordance. A
given software could be in accordance with the
specifications established but it can make the
user unsatisfied for any reason. In this case,
what can we say about the software quality? Tt
seems to be a usability question and so, should
we say that software with bad usability has bad
quality? What is the convenient level of
usability? What to say about usability and
quality synchronism? All these topics require
more detailed researches and may be treated in
a future survey. The direction of software
guality as made in product manufacture is
therefore questionable. This is because a
software is requested by a customer to perform
some action and it is expected not to cause any
surprise if the software work successfully. The
guarantee to assure the software functionality
as specified, can be obtained through
appropriate care and accuracy in the
development process, focusing also usability
aspects, Nevertheless, it is not enough to
consider methods, patterns and resources. More
than this, it is necessary that all IT members be
involved in the gquality up process having the
same objective of improving quality and
performance of software development ever
more.

Finally, there is no doubt that we should reach
high levels of software quality and reliability
and we can get il using practices, methods,
patterns, components, efficient and well
documented coding, statistical analysis of fault
tolerance, user complaint management etc.

9. REFERENCED BIBLIOGRAPHY

[1] Yoji Akao & Glenn H. Mazur “The leading
edge in QFD: past, present and future”

International Journal of Quality &
Reliability Management Vol. 20 No. 1,
2003 pp. 20-35

[2] Lai-Kow Chan *, Ming-Lu "Quality
function deployment: A literature review",
European Journal of Operational Research
143 (2002) 463—497.

[3] William D. Bamett and M.K. Raja
“Application of QFD to the software
development process* International Journal
of Quality & Reliability Management, Vol
12 Ne. 6, 1995, pp. 24-42

[4] Mercedes Ruiz, Isabel Ramos And Miguel
Toro “A Dynamic Integrated Framework
for Software Process Improvement”
Software Quality Journal, 10, 181-194,
2002

[5] Banker, R.D. and Kauffman, R.J., “Reuse
and productivity in integrated computer-
aided software engineering: an empirical
study”, MIS Quarterly, Vol. 15 No. 3,
1991, pp. 375401

Yoshizawa, T., Akao, Y., Ono, M. and
Shindo, H. (1993), “Recent aspects of
QFD in the Japanese software industry’’,
Quality Engineering, Vol. 5 No. 3, pp. 495-
504.

—_

[6

10. CONSULTED BIBLIOGRAPHY

Step by Step — QFD Customer-Driven Product
Design — 2™ Edition — John Terninko, 1997

Abrahamsson, Pekka, “Commitment to
Software Process Improvement—Development
of Diagnostic Tool to Facilitate Improvement”,
Software Quality Journal, 8, 63-76, 1999.

Omar AR., Harding J.A. and Popplewell K.,
"“Design for customer satisfaction: an
information modelling approach”, Integrated
Manufacturing Systems 10/4 [1999] 199+209.

Reiblein S., Symons A., “SPI: ‘I can’t get no
satisfaction’ - directing process improvement
to meet business needs”, Software Quality
Journal 6, (1997) 89-98.

Matthew L., Siddigi A., “Can the case for
CASE technology be advanced by Process

Improvement?” Software Quality Journal
7,(1998) 3-10.

PROCEEDINGS OF THE 2005 INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING
RESEARCH AND PRACTICE

SERP'05

Volume 11

Editors

Hamid R. Arabnia
Hassan Reza

Associate Editors

Lawrence Chung, Juan J. Cuadrado-Gallego
Sergiu Dascalu, Emanuel Grant,
Frederick C. Harris Jr., Michael Hinchey
Deborah Kobza, Youngsong Mun, Roy Sterritt
Nary Subramanian

Las Vegas, Nevada, USA
June 27-30, 2005
°CSREA Press

This volume contains papers presented at The 2005 International Conference on Software
Engineering Research and Practice (SERP'05). Their inclusion in this publication does not
necessarily constitute endorsements by editors or by the publisher.

Copyright and Reprint Permission

Copying without a fee is permitted provided that the copies are not made or distributed for direct
commercial advantage, and credit to source is given. Abstracting is permitted with credit to the
source. Please contact publisher, for other copying, reprint, or republication permission.

Copyright © 2005 CSREA Press
ISBN: 1-932415-49-1, 1-932415-50-5 (1-932415-51-3)
Printed in the United States of America

CSREA Press
U.S. A,

Demonic Fixed Point of Semantics Function 670

Fairouz Tchier

SESSION: SOFTWARE MAINTENANCE & UNDERSTANDING

Managing Fine—grained Changes in Software Document Relationships 681
Tien Nguyen

Defects in Open Source Software Maintenance - Two Case Studies: Apache and 688
Mozilla

Virpi, E Hotti, Timo, P Koponen

Eliciting a Model of Emergency Corrective Maintenance at SAS 694
Mira Kajko—Mattsson, Per Winther, Brian Vang, Anne Petersen

SESSION: SOFTWARE PROCESS

Towards A Better Understanding Of Process Patterns 703
Hanh Nhi Tran, Bernard Coulette, Bich Thuy Dong

Goal-Driven Measurement Framework for Software Innovation Processes 710
Subhas Misra, Vinod Kumar, Uma Kumar

A Personal Software Process Tool for Eclipse Environment 717
Xiaohong Yuan, Percy Vega, Huiming Yu, Yaohang Li

QFD Applied to Software Development 724
Lelis Tetsuo Murakami, Edison Spain, Jose—Sidnei Martini

Introducing Personal Software Process in A Small Computer Science Program 731
Xiaohong Wang

SESSION: PROCESS ANALYSIS + SOFTWARE AGENTS

Improving Prediction Accuracies Using Data Imputation 741

Sumanth Yenduri, Sitharama Iyengar, Louise Perkins

Legacy System Reengineering: Essential Process Steps 748
Gregory C. Arnold, Theresa Jefferson

Framework For Separation of Performance Concerns and Improved Modularity in 754
Multi Agent Systems Using Aspects

Tarig Mehmood, Naveed Ashraf, Khalid Rasheed

