
A method based on computational intelligence for

automatic black box test cases generation

Hindenburgo Elvas Gonçalves de Sá1, Edison Spina2
1 Engineering School, University of São Paulo, São Paulo, São Paulo, Brazil
2
 Engineering School, University of São Paulo, São Paulo, São Paulo, Brazil

Abstract - A method is presented based on computational

intelligence, learning set of rules and fuzzy logic to propose

the development of tools that generate and classify test cases

for black box tests in order to assist in the activity of test

preparation and to achieve a qualitatively superior coverage

on the manual creation process. The test technique entity

represents a unitary functional test technique, which can be

picked from a selection box., using sequential covering

algorithms, and a fuzzy inference engine to classify the test

cases generated. The test classification outcome results will

help the test engineer on his decisions.

Keywords: Software Engineering (Analysis, Tests), Fuzzy

(Artificial Intelligence), Computational Learning.

1 Introduction

 The software development process has the complex task of

ensuring its functionality according to specifications or project

requirements.

 Even with the effort and commitment of developers and

software engineers, these systems are susceptible to flaws or

defects. According to [13], "the software fails for reasons

known and preventable, such as poor documentation or lack of

it, inability to meet the requirements, or for not being clear

enough or because they are constantly changing, or even for

the absence of a key person who has deep knowledge of the

process object of the software system.

 The validation phase in the process of software development

is important in helping to keep the project under control.

Functional, or black box, tests aim to test the software without

the knowledge of how the internal instructions are developed.

The test runs only based on the requirements or specifications.

The test engineer prepares a set of test cases to simulate the

operation, making a comparison between the entries provided,

the expected results and outcomes. This set of test cases is

also known as mass test. According to [7] “Many companies

have some level of automation for the formation of mass

screening " in which test cases are stored in text files for later

interpreted and executed by a program.

According to [17], "Generating test data is a challenging

process. Without automation, the process is slow, expensive

and prone to errors. "However, techniques to automate the

generation of test data must respond to a variety of functional

criteria and non-functional and must implicitly or explicitly, to

solve problems involving the propagation of the state and

constraint satisfaction.

2 Functional Test Cases

 The most common way to detect defects in a piece of

software is to make the tester select a set of input data and

then run the software with the input data under a particular set

of conditions [14]. Which a test case is represented by a set of

input data, execution conditions and expected results.

 According to IEEE 610.12 (1990), a real test case must

contain at least the following information:

• A set of input data for test: This set contains the data

received from a source external to the code being tested.

The external source can be understood as hardware,

software, or human;

• Execution conditions: These conditions are required for

the test run, for example, a certain database state, or

configuration of a hardware device;

• Expected Outputs: are the expected outputs when the test

runs.

 A company may decide that additional information should

be included in a test case. A test case may be presented in

algebraic form T (x, S (x)), where there is a domain (D)

composed of all possible input elements (xn) software or

program (P) and test cases represented by a function (T) and

its input arguments (x) and expected output (S (x)).

 Figure 1 demonstrates the use of a test case in a typical

scenario of test activities including the figures of the tester,

oracle (or any document that person who can decide on

outputs produced by the tests) and the results of the tests

themselves.

.

Figure 1: Representation of a typical scenario for testing

activity Adapted from (Delamare, Maldonado, & Jino, p.3,

2007).

 Oracle is "A program, or produce a document that specifies

the outputs of a test can serve as an oracle ". Examples

include a specification (especially one that contains pre-and

post-condition) [14], document development, and a set of

requirements. Other sources are the suites of regression tests.

The test suites typically contain components with the correct

results for earlier versions of the software.

 Functional tests are to verify whether the software system

meets the complexity of specifications in which test cases are

much more common [11].

3 The Process of Generating Functional

Test Cases

 The generation of test cases consists of a Graphical User

Interface (GUI) allow the engineer to set the tests to be

executed as well as to assemble the knowledge base or to use

an existing base.

 The knowledge base, shown in Figure 2, is for storing of

data entities of the system configurations, from basic training

to test cases generated and classified.

Figure 2: Representation of Knowledge Base

 Entities’ configuration model stores the data relevant to

the statement of requirements to test cases and actual test

technique to be applied when performing the test.

 The statement of requirements, or requirements

document, will contain software requirements details such as

data entry, processing methods form and expected values as

output.

 The test case will have a strong relationship with the

entity-map requirements in view of the dependency between

them. The entity test case will be responsible for storing the

data for the test case name, the type used in input arguments,

return values and status after the test execution.

 The approved testing technique is a method technique

for functional testing which can be selected in a box.

 Figure 3 shows the process flow to generate test cases.

The first step is the configuration of the tests by the test

engineer, the second step is performed by generating test

cases that analyze the data stored in the knowledge base and

create situations (Test cases) undergoing the test, then the

running through the module tester. The latter accounts for

applying the generated test cases and for capturing the output

results.

 After the capture and execution of test cases the

qualifying round of tests begins. The uses a fuzzy inference

machine. The test results are classified into three groups: test

case "Cling", which has a great chance of finding or pointing

flaws. A test case is classified as "Little Compliant" when the

result is equal to the expected result. A test case is classified

as "non-adherent" when it does not apply to the set of input

arguments of the software being tested.

Figure 3: Representation of Automatic Generation Process

of Test Cases.

4 Generator Test Cases

 The method used for generating test cases is an automated

technique based on a learning set of rules, algorithms,

sequential coverage. Other methods such as Info-fuzzy

network (IFN), as in [11], are also used in order to generate

masses of tests automatically. However, the use of sequential

covering algorithms for automatic generation of test cases is

more effective as compared to IFN algorithms due to their

lower computational complexity.

 Machine Learning are computational techniques that

provide arguments for the computer that simulates human

behavior and that under [19] "is used to build systems capable

of automatically acquiring knowledge.”The learning of a set of

rules is one of the common techniques of machine learning.

Algoritmos de
Cobertura

Figure 4: Representation of Test Cases Generator.

 The test cases generator, shown in Figure 4, consists of

three distinct parts, namely: a data extractor knowledge base, a

binder of examples and a covering algorithm.

 The extractor accounts for seeking knowledge in the basic

data about the configuration of the tests and the set of

examples to start the cycle test generation.

 The process of classifying examples accounts for approved

data brought by the extractor and arranges them in a decision

tree, separating the attributes, rules and classes.

5 The Classifier Test Cases

 The use of fuzzy logic to analyze complex systems and

decision-making process is grounding in the approach

outlined by Zadeh which was based on premises "[..] that the

key elements of human thought are not just numbers, but

labels Fuzzy Sets [..]" [12]. In connection with the use of

fuzzy logic in decision-making processes or in decision

support systems and considering the fact that fuzzy logic is

not restricted to the control system the fuzzy logic was used to

classify the test results generated.

Figure 5: Representation of Test Cases Classifier

 The process of classifying test results consists of a fuzzy

inference machine and is represented in Figure 4. This

process consists of a set of input values that are produced by

the tests, the transformation of scalar values, or crisp, fuzzy

values (fuzzification). The second stage is called inference

machine which, based on Mamdani’s model (min and max),

makes associations with the inference rules, and consequently

generate the output values that undergo one more

transformation - from fuzzy to scalar (defuzzification)..

 The fuzzification consists of the input variables

(linguistic variable), which are the set of input values or

values crisps, the input labels and the fuzzy production rules.

The defuzzification process consists of the output variables

and the output labels.

 According to [12], "a linguistic variable is characterized

by a quintuple (x, T (x), U, G, M) where x is the variable

name, T (x) is the end of set of x, that is, the set of names of

linguistic values of x with each value starting a fuzzy number

defined on U, G is a syntactic rule to generalize the name of

the values of x, and M is a semantic rule associated with each

value and its meaning ".

 The following results are considered as linguistic

variables and assume the label of RO. Another set of

linguistic variables, the object of fuzzification are the

expected results from tests that assume the label of RE. The

linguistic variables are associated with a label called Input

Label (set of names of values of the terms of entry). To apply

the tests in the context of fuzzy classifier, we have:

x = Outcomes (RO)

U [0, n], considering that the return crisp values of the tests

are the numbers represented by the interval from zero to n.

T(RO) = {Success, Fault, Error };

T(RE) = { Covered, Not Covered, Not Applied };

G = Test case Adherent or Shortly Adherent, for example.

M = A rule which combines a linguistic variable to a fuzzy

set.

Figure 6: Fuzzification and defuzzification process.

 Figure 6 illustrates the fuzzification and defuzzification

process, in which the fuzzy production rules, represented by

R1, R2 to Rn are related to the input linguistic variables.

A fuzzy production rule can be described as follows:

IF (Set of conditions are met) THEN (1)

(Set consequences that can be inferred)

 The set of conditions to be fulfilled or the foregoing

terms, are represented as a conditional variable between

linguistic input and the label associated with it. The resulting

set of accounts that can be inferred, or consequential terms,

the result of processing of the foregoing terms and assume the

value of a specific output label.

 For the assembly of fuzzy production rules, it is

necessary to combine input variables (linguistic variables) RO

and RE and the names of linguistic values (or input label).

For the set of consequents, the output values combined with

the output labels were used, and the consequent were properly

met. The application of fuzzy inference rule in the classifier

of test cases is demonstrated in (2).

IF RO IS Success AND RE IS Covered THEN (2)

Classification = Adherent

 The last step in the classification process of test cases is

the defuzzification, or conversion process from fuzzy to

scalar. The defuzzification process accounts for calculating

the classification degree of a given test case. The degree

classification degree is determined by the output variables,

represented by output Adherent labels, Little or Not Adherent.

Figura 7: Demonstrating the use of Fuzzy Inference Rules

for using the Mathlab

 Figure 7 shows a test of the application of fuzzy

inference rules using the Mamdani method of Max and Min.

The analysis of the chart is made starting from the point that

so far as it increases the values of linguistic variable

"Success" and decrease that the values of the linguistic

variable "Coverage" is the lowest degree of relevance and

therefore “Little adherent" is the Test Case.

6 Results

 The results obtained with the test conducted using the

Mathlab tool, Figure 7, demonstrate the use of fuzzy logic to

classify the test cases generated and tested by the proposed

model of automatic generation of test cases for functional

software. The application of fuzzy logic in decision support

systems based its use as results of test cases generated

classifier and tested for this model.

 The test performed with the data of the proposed model

to generate test cases aims to classify the test cases generated

and tested, shown in Figure 6 and Figure 7, does the inclusion

of all possible inference rules and is applicable to test the

handling of fuzzy inference machine (which would cause

distortions in the analysis of a control system using fuzzy

logic) in Mathlab they were either not relevant or did not

apply to the set of values entry.

 From the model, is possible to manage the results from

the tests as well as make comparisons between expected

outcomes and obtained results and the test engineer may act as

an oracle. This point is important for the analysis and

disclosure of test results.

7 Conclusions

 The scope of the Automatic Generating Case software

testing function is to generate test cases to test the API's

designed to meet the particularities of an information system,

such as API's focused on encapsulating command for

connecting to databases, commands, database, communication

devices with serial or parallel port communications. The

proposed tool is not ready to test the API's operating system

or web development.

 A comparative study of methods for automatic

generation using approaches such as Genetic Algorithms is

important to better validate this model and this model was

also a study aimed at checking the performance between the

Mamdani and Takagi-Sugeno models with a view of the study

by [9] show that in both models (Takagi-Sugeno and

Mamdani), taking into account the number of entries, are

comparable and that the systems "Takagi-Sugeno can be.

More economical compared to the Mamdani model number of

entries and rules when this model is no trapezoidal or no

triangular".

8 References

[1] XUE, Ming e ZHU, Changjun (2009). A Study and

Application on Machine Learning of Artificial Intelligence;

International Joint Conference on Artificial Intelligence.

[2] LEATHER, Hugh e BONILLA, Edwin e O’BOYLE,

Michael (2009). Automatic Feature Generation for Machine

Learning Based Optimizing Compilation. International

Symposium on Code Generation and Optimization.

[3] RAHMAN, A.M.J. Md. Zubair e

BALASUBRAMANIE, P. (2008). An Efficient Algorithm for

Mining Maximal Frequent Item Sets; Journal of Computer

Science 4 (8): Páginas 638-645; Science Publications.

[4] MICHAEL, Christoph C. e MCGRAW, Gary e

SCHATZ, Michael A. (2001). Generating Software Test Data

by Evolution. IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 27, NO. 12, DECEMBER. Página

1085.

[5] ANSARI, A. Q. e PATKI, Tapasya e PATKI, A. B. e

KUMAR, V.(2007). Integrating Fuzzy Logic and Data

Mining: Impact on Cyber Security. Fourth International

Conference on Fuzzy Systems and Knowledge Discovery

(FSKD).

[6] JAVED, A. Z. e STROOPER, P. A. e WATSON, G. N.

(2007) Automated Generation of Test Cases Using Model-

Driven Architecture. School of ITEE, The University of

Queensland, Australia. Second International Workshop on

Automation of Software Test (AST'07).

[7] BERNARDO, P. C. e KON, F. (2008). A Importância

dos Testes Automatizados. Engenharia de Software Magazine

, 1(3), Páginas. 54-57.

[8] BIANCHI, R. E. (2008). Extração de conhecimento

simbólico em técnicas de aprendizado de máquina caixa-preta

por similaridade de rankings. Tese de Doutorado São Carlos,

São Paulo: ICMC/USP - Instituto de Ciências Matemáticas e

de Computação da Universidade de São Paulo.

[9] YING, Hao e DING, Yongsheng e LI, Shaokuan e

SHAO, Shihuang (1999). Comparison of Necessary

Conditions for Typical Takagi–Sugeno and Mamdani Fuzzy

Systems as Universal Approximators. IEEE

TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS - PART A: SYSTEMS AND HUMANS,

VOL. 29, NO. 5, SEPTEMBER.

[10] RECH, Jörg e ALTHOFF, Klaus-Dieter (2004).

Artificial Intelligence and Software Engineering: Status and

Future Trends. Künstliche Intelligenz : KI, Vol.18, No.3,

Páginas 5-11 : Ill., Lit.

[11] LAST, Mark e FRIEDMAN, Menahem e KANDEL,

Abraham (2003). The Data Mining Approach to Automated

Software Testing. SIGKDD ’03, August 24-27, Washington,

DC, USA. ACM 1-58113-737-0/03/0008; Páginas. 388 -

396.

[12] ZADEH, L.A. (1973) Outline of a New Approach to the

analysis of complex systems and Decision Process. IEEE

Transactional on Systems, MAN, and Cybernetics, Vol. SMC-

3, Nº 1, Janeiro, Páginas 28-44.

[13] CHARETTE, R. N. (2007). “Learning from Software

Failure”. IEEE Spectrum,.

http://www.spectrum.ieee.org/computing/software/learning-

from-software-failure, September.

[14] DELAMARO, M. e MALDONADO, J. C. e JINO, M.

(2007). Introdução ao teste de software. São Paulo, Elsevier,

São Paulo.

[15] XUE, Ming e ZHU, Changjun (2009). A Study and

Application on Machine Learning of Artificial Intelligence.

International Joint Conference on Artificial Intelligence,

páginas 272-274.

[16] HAMBLING, B. e MORGAN, P. e SAMAROO, A. e

THOMPSON, G. e WILLIAMS, P. (2007). Software Testing.

United Kingdown, Inglaterra: BCS - The British Computer

Society.

[17] HARMAN, M. (2007). Automated Test Data Generation

using search based software engineering. Second

International Workshop on Automation of Software Test .

[18] PAPO, J. (2009). http://josepaulopapo.blogspot.com/.

Acesso em 28 de Outubro de 2009, disponível em

http://josepaulopapo.blogspot.com/2009/10/testes-unitarios-

beneficios-economicos.html.

[19] PRATI, R. C. (2006). Novas abordagens em

aprendizado de máquina para a geração de regras, classes,

desbalanceamentos e ordenação de casos. ICMC/USP -

Instituto de Ciências Matemáticas e Computação da

Universidade de São Paulo, Julho.

[20] REZENDE, S. O. e PRATI, R. (2005). Sistemas

Inteligentes - Fundamentos e Aplicações. Barueri, SP:

Manole.

[21] TALON, B. e LECLET, D. e LEWANDOWSKI, A. e

BOURGUIN, G. (2009). Learning Software Testing using a

Collaborative Activities Oriented Platform. Ninth IEEE

International Conference on Advanced Learning

Technologies, Maio.

ICAI'10 - The 2010 International Conference
on Artificial Intelligence
ICAI'10 is the 12th annual conference

C
A
L
L

F
O
R

P
A
P
E
R
S

You are invited to submit a full paper for consideration. All accepted papers will be
published in the ICAI conference proceedings (in printed book form; later, the
proceedings will also be accessible online). Those interested in proposing
workshops/sessions, should refer to the relevant sections that appear below.

Topics of interest include, but are not limited to, the following:

Brain models / cognitive science
Natural language processing
Fuzzy logic and soft computing
Software tools for AI
Expert systems
Decision support systems
Automated problem solving
Knowledge discovery
Knowledge representation
Knowledge acquisition
Knowledge-intensive problem solving techniques
Knowledge networks and management
Intelligent information systems
Intelligent data mining and farming
Intelligent web-based business
Intelligent agents
Intelligent networks
Intelligent databases
Intelligent user interface
AI and evolutionary algorithms
Intelligent tutoring systems
Reasoning strategies
Distributed AI algorithms and techniques
Distributed AI systems and architectures
Neural networks and applications
Heuristic searching methods
Languages and programming techniques for AI
Constraint-based reasoning and constraint programming
Intelligent information fusion
Learning and adaptive sensor fusion
Search and meta-heuristics
Multisensor data fusion using neural and fuzzy techniques
Integration of AI with other technologies
Evaluation of AI tools

ICAI'10 - The 2010 International Conference on Artificial Intelligence... http://www.world-academy-of-science.org/worldcomp10/ws/conferenc...

1 de 3 5/4/2012 11:45

Induction of document grammars
Supervised and unsupervised classification of web
data
General Structure-based approaches in
information retrieval, web authoring, information
extraction, and web content mining
Latent semantic analysis
Aspects of natural language processing
Intelligent linguistic
Aspects of text technology
Computational vision
Bioinformatics and computational biology
Biostatistics
High-throughput data analysis
Biological network analysis: protein-protein
networks, signaling networks, metabolic
networks, transcriptional regulatory networks
Graph-based models in biostatistics
Computational Neuroscience
Computational Chemistry
Computational Statistics
Systems Biology
Algebraic Biology

Click Here for more details

Administered by UCMSS
Universal Conference Management Systems & Support

San Diego, California, USA
Contact: Kaveh Arbtan

Hit Counter Sponsored by: Charter Communications Internet

ICAI'10 - The 2010 International Conference on Artificial Intelligence... http://www.world-academy-of-science.org/worldcomp10/ws/conferenc...

3 de 3 5/4/2012 11:45

