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Abstract - A method is presented based on computational 

intelligence, learning set of rules and fuzzy logic to propose 

the development of tools that generate and classify test cases 

for black box tests in order to assist in the activity of test 

preparation and to achieve a qualitatively superior coverage 

on the manual creation process.  The test technique entity 

represents a unitary functional test technique, which can be 

picked from a selection box., using sequential covering 

algorithms, and a fuzzy inference engine to classify the test 

cases generated.  The test classification outcome results will 

help the test engineer on his decisions. 
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(Artificial Intelligence), Computational Learning. 

 

1 Introduction 

  The software development process has the complex task of 

ensuring its functionality according to specifications or project 

requirements. 

 Even with the effort and commitment of developers and 

software engineers, these systems are susceptible to flaws or 

defects.  According to [13], "the software fails for reasons 

known and preventable, such as poor documentation or lack of 

it, inability to meet the requirements, or for not being clear 

enough or because they are constantly changing, or even for 

the absence of a key person who has deep knowledge of the 

process object of the software system. 

 The validation phase in the process of software development 

is important in helping to keep the project under control.  

Functional, or black box, tests aim to test the software without 

the knowledge of how the internal instructions are developed. 

The test runs only based on the requirements or specifications. 

The test engineer prepares a set of test cases to simulate the 

operation, making a comparison between the entries provided, 

the expected results and outcomes.  This set of test cases is 

also known as mass test.  According to [7] “Many companies 

have some level of automation for the formation of mass 

screening " in which test cases are stored in text files for later 

interpreted and executed by a program. 

According to [17], "Generating test data is a challenging 

process.  Without automation, the process is slow, expensive 

and prone to errors.  "However, techniques to automate the 

generation of test data must respond to a variety of functional 

criteria and non-functional and must implicitly or explicitly, to 

solve problems involving the propagation of the state and 

constraint satisfaction. 

 

2 Functional Test Cases 

 The most common way to detect defects in a piece of 

software is to make the tester select a set of input data and 

then run the software with the input data under a particular set 

of conditions [14]. Which a test case is represented by a set of 

input data, execution conditions and expected results. 

 According to IEEE 610.12 (1990), a real test case must 

contain at least the following information: 

• A set of input data for test: This set contains the data 

received from a source external to the code being tested.  

The external source can be understood as hardware, 

software, or human; 

• Execution conditions: These conditions are required for 

the test run, for example, a certain database state, or 

configuration of a hardware device; 

• Expected Outputs: are the expected outputs when the test 

runs. 

 

 A company may decide that additional information should 

be included in a test case.  A test case may be presented in 

algebraic form T (x, S (x)), where there is a domain (D) 

composed of all possible input elements (xn) software or 

program (P) and test cases represented by a function (T) and 

its input arguments (x) and expected output (S (x)). 

 Figure 1 demonstrates the use of a test case in a typical 

scenario of test activities including the figures of the tester, 

oracle (or any document that person who can decide on 

outputs produced by the tests) and the results of the tests 

themselves. 

 



.  

Figure 1: Representation of a typical scenario for testing 

activity Adapted from (Delamare, Maldonado, & Jino, p.3, 

2007). 

 Oracle is "A program, or produce a document that specifies 

the outputs of a test can serve as an oracle ".  Examples 

include a specification (especially one that contains pre-and 

post-condition) [14], document development, and a set of 

requirements.  Other sources are the suites of regression tests.  

The test suites typically contain components with the correct 

results for earlier versions of the software. 

 Functional tests are to verify whether the software system 

meets the complexity of specifications in which test cases are 

much more common [11]. 

 

3 The Process of Generating Functional 

Test Cases 

 The generation of test cases consists of a Graphical User 

Interface (GUI) allow the engineer to set the tests to be 

executed as well as to assemble the knowledge base or to use 

an existing base. 

 The knowledge base, shown in Figure 2, is for storing of 

data entities of the system configurations, from basic training 

to test cases generated and classified. 

 

Figure 2: Representation of Knowledge Base 

 Entities’ configuration model stores the data relevant to 

the statement of requirements to test cases and actual test 

technique to be applied when performing the test. 

 The statement of requirements, or requirements 

document, will contain software requirements details such as 

data entry, processing methods form and expected values as 

output. 

 The test case will have a strong relationship with the 

entity-map requirements in view of the dependency between 

them.  The entity test case will be responsible for storing the 

data for the test case name, the type used in input arguments, 

return values and status after the test execution. 

 The approved testing technique is a method technique 

for functional testing which can be selected in a box. 

 Figure 3 shows the process flow to generate test cases.  

The first step is the configuration of the tests by the test 

engineer, the second step is performed by generating test 

cases that analyze the data stored in the knowledge base and 

create situations (Test cases) undergoing the test, then the 

running through the module tester.  The latter accounts for 

applying the generated test cases and for capturing the output 

results. 

 After the capture and execution of test cases the 

qualifying round of tests begins.  The uses a fuzzy inference 

machine.  The test results are classified into three groups: test 

case "Cling", which has a great chance of finding or pointing 

flaws.  A test case is classified as "Little Compliant" when the 

result is equal to the expected result.  A test case is classified 

as "non-adherent"  when it does not apply to the set of input 

arguments of the software being tested. 

 

Figure 3: Representation of Automatic Generation Process 

of Test Cases. 

 

4 Generator Test Cases 

 The method used for generating test cases is an automated 

technique based on a learning set of rules, algorithms, 

sequential coverage.  Other methods such as Info-fuzzy 

network (IFN), as in [11], are also used in order to generate 

masses of tests automatically.  However, the use of sequential 

covering algorithms for automatic generation of test cases is 

more effective as compared to IFN algorithms due to their 

lower computational complexity. 

 Machine Learning  are computational techniques that 

provide arguments for the computer that simulates human 

behavior and that under [19] "is used to build systems capable 



of automatically acquiring knowledge.”The learning of a set of 

rules is one of the common techniques of machine learning. 
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Figure 4: Representation of Test Cases Generator. 

 The test cases generator, shown in Figure 4, consists of 

three distinct parts, namely: a data extractor knowledge base, a 

binder of examples and a covering algorithm. 

 

 The extractor accounts for seeking knowledge in the basic 

data about the configuration of the tests and the set of 

examples to start the cycle test generation. 

 

 The process of classifying examples accounts for approved 

data brought by the extractor and arranges them in a decision 

tree, separating the attributes, rules and classes. 

 

5 The Classifier Test Cases 

 The use of fuzzy logic to analyze complex systems and 

decision-making process is grounding in the approach 

outlined by Zadeh which was based on premises "[..] that the 

key elements of human thought are not just numbers, but 

labels Fuzzy Sets [..]" [12].  In connection with the use of 

fuzzy logic in decision-making processes or in decision 

support systems and considering the fact that fuzzy logic is 

not restricted to the control system the fuzzy logic was used to 

classify the test results generated. 

 

Figure 5: Representation of Test Cases Classifier 

 The process of  classifying test results consists of a fuzzy 

inference machine and is represented in Figure 4.  This 

process consists of a set of input values that are produced by 

the tests, the transformation of scalar values, or crisp, fuzzy 

values (fuzzification).  The second stage is called inference 

machine which, based on Mamdani’s model (min and max), 

makes associations with the inference rules, and consequently 

generate the output values that undergo one more 

transformation - from fuzzy to scalar (defuzzification).. 

 The fuzzification consists of the input variables 

(linguistic variable), which are the set of input values or 

values crisps, the input labels and the fuzzy production rules.  

The defuzzification process consists of the output variables 

and the output labels. 

 According to [12], "a linguistic variable is characterized 

by a quintuple (x, T (x), U, G, M) where x is the variable 

name, T (x) is the end of set of x, that is, the set of names of 

linguistic values of x with each value starting a fuzzy number 

defined on U, G is a syntactic rule to generalize the name of 

the values of x, and M is a semantic rule associated with each 

value and its meaning ". 

 The following results are considered as linguistic 

variables and assume the label of RO.  Another set of 

linguistic variables, the object of fuzzification are the 

expected results from tests that assume the label of RE. The 

linguistic variables are associated with a label called Input 

Label (set of names of values of the terms of entry).  To apply 

the tests in the context of fuzzy classifier, we have: 

x = Outcomes (RO) 

U [0, n], considering that the return crisp values of the tests 

are the numbers represented by the interval from zero to n. 

T(RO) = {Success, Fault, Error }; 

T(RE) = { Covered, Not Covered, Not Applied }; 

G = Test case Adherent or Shortly Adherent, for example. 

M = A rule which combines a linguistic variable to a fuzzy 

set. 

 

Figure 6: Fuzzification and defuzzification process. 



 Figure 6 illustrates the fuzzification and defuzzification 

process, in which the fuzzy production rules, represented by 

R1, R2 to Rn are related to the input linguistic variables. 

A fuzzy production rule can be described as follows:  

IF (Set of conditions are met) THEN     (1) 

(Set consequences that can be inferred)       

 The set of conditions to be fulfilled or the foregoing 

terms, are represented as a conditional variable between 

linguistic input and the label associated with it.  The resulting 

set of accounts that can be inferred, or consequential terms, 

the result of processing of the foregoing terms and assume the 

value of a specific output label. 

 For the assembly of fuzzy production rules, it is 

necessary to combine input variables (linguistic variables) RO 

and RE and the names of linguistic values (or input label).  

For the set of consequents, the output values combined with 

the output labels were used, and the consequent were properly 

met.  The application of fuzzy inference rule in the classifier 

of test cases is demonstrated in (2). 

IF RO IS Success AND RE IS Covered THEN    (2) 

Classification = Adherent       

 The last step in the classification process of test cases is 

the defuzzification, or conversion process from fuzzy to 

scalar.  The defuzzification process accounts for calculating 

the classification degree of a given test case.  The degree 

classification degree is determined by the output variables, 

represented by output Adherent labels, Little or Not Adherent. 

 

Figura 7: Demonstrating the use of Fuzzy Inference Rules 

for using the Mathlab 

 Figure 7 shows a test of the application of fuzzy 

inference rules using the Mamdani method of Max and Min.  

The analysis of the chart is made starting from the point that 

so far as it increases the values of linguistic variable 

"Success" and decrease that the values  of the linguistic 

variable "Coverage" is the lowest degree of relevance and 

therefore “Little adherent" is the Test Case. 

 

6 Results 

 The results obtained with the test conducted using the 

Mathlab tool, Figure 7, demonstrate the use of fuzzy logic to 

classify the test cases generated and tested by the proposed 

model of automatic generation of test cases for functional 

software.  The application of fuzzy logic in decision support 

systems based its use as results of test cases generated 

classifier and tested for this model. 

 The test performed with the data of the proposed model 

to generate test cases aims to classify the test cases generated 

and tested, shown in Figure 6 and Figure 7, does the inclusion 

of all possible inference rules and is applicable to test the 

handling of fuzzy inference machine (which would cause 

distortions in the analysis of a control system using fuzzy 

logic) in Mathlab they were either not relevant or did not 

apply to the set of values entry. 

 From the model, is possible to manage the results from 

the tests as well as make comparisons between expected 

outcomes and obtained results and the test engineer may act as 

an oracle.  This point is important for the analysis and 

disclosure of test results. 

7 Conclusions 

 The scope of the Automatic Generating Case software 

testing function is to generate test cases to test the API's 

designed to meet the particularities of an information system, 

such as API's focused on encapsulating command for 

connecting to databases, commands, database, communication 

devices with serial or parallel port communications.  The 

proposed tool is not ready to test the API's operating system 

or web development. 

 A comparative study of methods for automatic 

generation using approaches such as Genetic Algorithms is 

important to better validate this model and this model was 

also a study aimed at checking the performance between the 

Mamdani and Takagi-Sugeno models with a view of the study 

by [9] show that in both models (Takagi-Sugeno and 

Mamdani), taking into account the number of entries, are 

comparable and that the systems "Takagi-Sugeno can be.  

More economical compared to the Mamdani model number of 

entries and rules when this model is no trapezoidal or no 

triangular". 
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