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Abstract. Hyper-heuristics are high-level methodologies responsible for
automatically discover how to combine elements from a low-level heuris-
tic set in order to solve optimization problems. Agents, in turn, are au-
tonomous component responsible for sensing an environment and per-
forming some actions according to their perceptions. Thus, agent-based
techniques seem suitable for the design of hyper-heuristics. In a pre-
vious work we proposed MOABHH [5], an agent-based hyper-heuristic
framework for choosing the best multi-objective evolutionary algorithm
(MOEA). Our approach performs a cooperative voting procedure, con-
sidering a set of quality indicator voters, to define which MOEA should
generate more new solutions during execution time. However, MOABHH
was just applied to solve benchmark problems, without being tested in
real-world problems. Thus, this paper evaluates MOABHH in four real-
world multi-objective engineering problems. For this purpose, an addi-
tional MOEA and new quality indicators better adapted to real-world
problems were used. The obtained results show that our strategy aways
find solutions at least equals to the ones generated by the best algorithm,
and sometimes even overcomes these results.

Keywords: Hyper-heuristics · Multi-objective Evolutionary algorithms
· Voting methods · Agent cooperation. · Crashworthiness · Car Side Im-
pact · Machining · Water Resource Planning

1 Introduction

Multi-objective problems (MOPs) are ubiquitous in many real-world problems.
In these problems, the solutions should optimize different and often conflicting
criteria. Usually, classical exact optimization methods cannot be used to deal
with MOPs and more sophisticated heuristic techniques are required. Multi-
objective evolutionary algorithms (MOEAs) have been successfully applied to
the solution of MOPs [2]. MOEAs are heuristic techniques that allow a flexible
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representation of the solutions and do not impose continuity conditions on the
functions to be optimized. Due to the general and abstract characteristics of
MOEAs, researchers have proposed several algorithms to cope with MOPs [14].
No single MOEA, however, can outperform the others in all problems, and algo-
rithms perform differently depending on the problem characteristics. Therefore,
techniques able to choose the most suitable MOEA for a given problem have
raised to help in this difficult task, thus, diminishing part of the user effort to
test all these algorithms; this new field of research is called Hyper-heuristics.

An Hyper-heuristic is a high-level heuristic that can be used to reduce the
difficulty of selecting the most suitable heuristic for a given problem. According
to Burke et al. [4], hyper-heuristics are considered both as (i) selection method-
ologies that help to choose a low-level heuristic (as a MOEA) and (ii) heuristic
generation methodologies that can generate new low-level heuristics from a given
set of components. Most research in the field of Hyper-heuristic has been limited
to treat single-objective optimization problems [16]. However, there are some
interesting studies focused on multi-objective optimization [16] [25] [1].

In a preliminary research [5], we proposed a Multi-Objective Agent-Based
Hyper-Heuristic (MOABHH), an agent-based multi-objective hyper-heuristic fo-
cused on selecting the most suitable multi-objective evolutionary algorithm dur-
ing execution time. MOABHH used the concept of voting to define which algo-
rithm should receive a bigger participation in the generation of solutions. As a
voting procedure, we applied the Copeland voting method and employed a set
of voter agents responsible for evaluating algorithms performance according to
different quality indicators; these are usually used by the MOP community to
compare the performance of MOEAs.

The MOP community also uses well-known benchmarks to perform compar-
ative evaluations; these latter provide generic test suites, enabling researchers to
compare their multi-objective numerical and combinatorial optimization prob-
lem results (regarding effectiveness and efficiency) with others, over a spectrum
of algorithms instantiations [6]. So far, MOABHH employed the WFG bench-
mark to this end. However, the fact that an algorithm successfully “passes” all
submitted test functions in a benchmark doesn’t guarantee a continued effec-
tiveness and efficiency when it is applied to real-world problems [6].

Hence, this work evaluates MOABHH in 4 (four) real-world multi-objective
engineering problems. The remainder of the paper is organized as follows. In the
next section, we provide an overview of multi-objective optimization and present
the 4 real-world engineering optimization problems used in this work. In Sec-
tion 3, multi-objective evolutionary algorithms are briefly introduced. MOABHH
is presented in Section 4, and the experimental setup and results are presented
in Section 5. Finally, Section 6 presents our conclusions and further work.

2 Multi-Objective Engineering Optimization Problems

A multi-objective optimization problem (MOP) is defined in terms of a search
space of allowed n decision values (x1, ..., xn), and an objective function vector
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(f1, ..., fm), with size m, mapping parameter vectors into objective space. In
these optimization problems, we aim to find the set of optimal trade-off solutions
known as the Pareto optimal set [3]. Next, we describe the four real-world MOPs
used in this work. Three of these problems are are constrained, i.e., present
additional constraints to the values that can be attributed to a variable.

2.1 Crashworthiness

The vehicle crashworthiness problem [15] is a three-objective non-constrained
problem where the crash safety level of a vehicle is optimized. In this problem,
a higher safety level means how well a vehicle can protect the occupants from
the effects of a frontal accident.

In this problem, there are five decision variables that represent the thickness
of reinforced members around the car front, bounded as 1mm ≤ xi ≤ 3mm; and
three objective functions to evaluate: (i) the mass of the vehicle f1(x) (Equa-
tion 1), (ii) an integration of collision acceleration in the full frontal crash f2(x)
(Equation 2), (iii) the toe-board intrusion in the 40% offset-frontal crash f3(x)
(Equation 3).

f1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2

+4.5688768x3 + 7.7213633x4 + 4.4559504x5
(1)

f2(x) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4 − 0.3695x1x4

+0.0861x1x5 + 0.3628x2x4 − 0.1106x1x1 − 0.3437x3x3 + 0.1764x4x4
(2)

f3(x) = −0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3

−0.0073x1x2 + 0.024x2x3 − 0.0118x2x4 − 0.0204x3x4

−0.008x3x5 − 0.0241x2x2 + 0.0109x4x4

(3)

2.2 Car Side Impact

Car Side Impact Problem [12] is a three-objective constrained problem which
involves the optimization of a vehicle side impact crashworthiness. This problem
uses seven decision variables describing the thickness of B-Pillars, floor, cross-
members, door beam, roof rail, etc. Three objective functions are considered:
(i) the weight of car f1(x) (Equation 4), (ii) the pubic force experienced by
a passenger f2(x) (Equation 5), and (iii) the average velocity of the V-Pillar
responsible for withstanding the impact load f3(x) (Equation 6).

f1(x) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 0.00001x6 + 2.73x7 (4)

f2(x) = 4.72− 0.5x4 − 0.19x2x3 (5)

f3(x) = 0.5 ∗ (10.58− 0.674x1x2 − 0.67275x2 + 16.45− 0.489x3x7 − 0.843x5x6) (6)

This problem has eight additional constraints. For the spacing purpose, we
omit them. It can be seen in [12] or in the external attach 1.

1 https://github.com/vinixnan/PublicData/raw/master/Contrainsts.pdf
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2.3 Machining

The machining problem [10] formulates machining recommendations under mul-
tiple criteria. This problem considered tests on aluminum cut with VC-3 carbide
cutting tools as a basis to test the approach, which has significant automotive
industry applications [10]. This problem has three decision variables and four
objective functions. Speed (v), feed (j) and depth of cut (d) are attributes con-
sidered in the three decision variables definition: x1 = ln(v) , x2 = ln(1000j) and
x3 = ln(1000d). Four objectives are considered: (i) minimizing the surface rough-
ness f1(x) (Equation 7); (ii) maximizing the surface integrity f2(x) (Equation 8),
which refers to the amount of undamaged primary silicon at and immediately
below the surface; (iii) maximizing the tool life f3(x) (Equation 9), which is gen-
erally defined as the machining time to reach a fixed amount of uniform flank
wear; and (iv) maximizing the metal removal rate f4(x) (Equation 10), which is
a measure of parts made per unit machining time.

f1(x) = −7.49 + 0.44x1 − 1.16x2 + 0.61x3 (7)

f2(x) = −4.31 + 0.92x1 − 0.16x2 + 0.43x3; (8)

f3(x) = 21.90− 1.94x1 − 0.30x2 − 1.04x3 (9)

f4(x) = −11.331 + x1 + x2 + x3 (10)

This problem has three additional constraints. For the spacing purpose, we
omit them. It can be seen in [10] or in the external attach 1.

2.4 Water Resource Planning

The Water Resource Planning [23] is a five-objective constrained problem which
involves optimal planning for a storm drainage system in an urban area. The
problem variables are the local detention storage capacity x1, the maximum
treatment rate x2 and the maximum allowable overflow rate x3. There are five
objective functions to be minimized: (i) the drainage network cost f1(x) (Equa-
tion 11), (ii) the storage facility cost f2(x) (Equation 12), (iii) the treatment
facility cost f3(x) (Equation 13), (iv) the expected flood damage cost f4(x)
(Equation 14), and (v) the expected economic loss due to flood f5(x) (Equa-
tion 15).

f1(x) = 106780.37 ∗ (x2 + x3) + 61704.67 (11)

f2(x) = 3000x1 (12)

f3(x) =
305700 ∗ 2289x2
(0.06 ∗ 2289)0.65

(13)

f4(x) = 250 ∗ 2289 ∗ exp(−39.75x2 + 9.9x3 + 2.74) (14)

f5(x) = 25 ∗ (
1.39

x1x2
+ 4940x3 − 80) (15)

This problem has seven additional constraints. For the spacing purpose, we
omit them. It can be seen in [23] or in the external attach 1.
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3 Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEAs) are algorithms inspired by
nature, in special by Darwin’s survival of the fittest. Thus, solutions for an op-
timization problem are individuals that reproduce, suffer eventually some mu-
tation, and compete for survival.

Some MOEAs employ the concept of Pareto Dominance [18] in order to
find a non-dominated set. This is performed by selecting solutions which do not
dominate one another, that is, no solution is better than another with respect
to all objective functions.

Hence, different replacement strategies have been proposed by several algo-
rithms in the literature. We present four of them that presently are the most
popular ones. All of them consider a population of solutions P , a population of
offspring solutions O, and a maximum population size N .

3.1 Indicator-Based Evolutionary Algorithm

(IBEA) [28] performs a replacement considering a specific quality indicator (ex-
plained in Subsection 3.6). Thus, this algorithm selects surviving solutions from
P ∪ O by removing the ones who contribute less to increase the given quality
indicator. The quality indicator which is usually adopted is Hypervolume.

3.2 Non-dominated Sorting Genetic Algorithm-II

(NSGA-II) [9] performs the replacement strategy considering Pareto Dominance
and Crowding Distance selection. This latter measures how close a solution is to
its neighbors. Large values allow better diversity in the population. Thus, NSGA-
II selects surviving solutions from P ∪O first taking non-dominated solutions to
compose P ′ and while |P ′| < N , it adds dominated solutions according to the
Crowding Distance values.

3.3 Strength Pareto Evolutionary Algorithm

(SPEA2) [29] performs the replacement strategy considering Pareto Dominance
and the use of Strength values. Strength values are computed considering, for
each solution, the number of solutions that it dominates and those that it is
dominated by. Thus, SPEA2 selects surviving solutions from P ∪O first taking
non-dominated solutions to compose P ′ and while |P ′| < N , it adds dominated
solutions according to Strength values.

3.4 Generalized Differential Evolution 3

Differently from previously presented algorithms, (GDE3) [13] doesn’t employ
a crossover operator to generate new solutions. This algorithm instead uses the
differential evolution operator [21]. Differently from the crossover operator, DE
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generates new solutions by combining more than three different solutions. In
most of the cases, a DE is just applied to continuous optimization problems,
because DE generates offspring parameters by calculating weighted difference
among solutions parameters. In order to define which solution should survive,
GDE3 employs the same surviving selection method used by NSGA-II.

3.5 Remarks

In our previous work [5], we used NSGA-II, SPEA2 and IBEA as MOEAs. In the
current work, we added GDE3 to this set, because this algorithm uses a different
way to combine solutions instead of applying crossover. This helps MOABHH
because of its different way to explore the search space.

3.6 Quality Indicators

There are some quality indicators to assess a MOEA performance. In this session,
some of them are presented:

3.7 AE

The Algorithm Effort quality indicator can be defined as the ratio of the total
number of function evaluations Neval over a fixed period of simulation time
Trun [22]. This indicator is interesting to evaluate how fast a MOEA can generate
solutions.

AE =
Trun

Neval
(16)

There are other quality indicators where the returning set of solutions (S) are
employed in order to evaluate a MOEA quality. That is the case of the following
quality indicators:

3.8 RNI

The ratio of non-dominated solutions [22] evaluates the percent of non-dominated
solutions ND(S) in the population S, as shown in Equation 17. Higher RNI val-
ues are better than lower ones.

RNI(S) =
|ND(S)|
|S| (17)

3.9 Hypervolume

The hypervolume [30] of a non-dominated solution set S is the size of the part
of the objective space that is dominated collectively by the solutions in S [26].
Thus, the hypervolume indicator computes the area (or volume when more than
two objectives are employed) in the search space [30]. Equation 18 presents how
to calculate this indicator, where vi is the volume. Higher hypervolumes are
preferred to lower ones.

HV (S) = volume(∪|S|i=1vi) (18)



Solving real-world MOPs with an Election-Based Hyper-Heuristic 7

3.10 HR

The Hyper-area Ratio (HR) [24] employs the hypervolume of a solution set A
divided by the hypervolume value of a Reference Front B. Higher values are
preferred to lower ones.

HV (S, P ) =
HV (A)

HV (B)
(19)

3.11 ER

Pareto Dominance Indicator (ER) [11] considers the solutions intersection be-
tween two given sets A and B, which can be provided by different algorithms or
used to compare a solution set S with a Pareto Front P . Equation 20 presents
ER, where the size of the intersection is compared with the size of B. Higher
values are preferred to lower ones.

ER(A,B) =
|A ∩B|
|B| (20)

3.12 UD

The Uniform distribution of non-dominated population evaluates how distributed
are the solutions along the search space. The distribution should be as uniform
as possible to achieve consistent gaps among neighboring individuals in the pop-
ulation [22]. This quality indicator is calculated according to Equation 21.

UD(S) =
1

1 + Snc
(21)

where Snc is the standard deviation of niche count of the overall set ofNonDominated(S)
(Equation 22).

Snc(ND) =

√∑|ND|
i (nc(ndi)− nc(ND))2

|ND| − 1
(22)

where |ND| is the size of the non-dominated set ND of the population S; nc(ndi)
is the niche count of ith a solution;

nc(ndi) =

|ND|∑
j,j 6=i

f(i, j), f(i, j) =

{
1 if dist(i, j) < σshare

0 otherwise

}
(23)

nc(ND) is the mean value of nc(ndi) and dist(i, j) is the distance between
individual i and j in the objective domain.

3.13 Remarks

In our previous work [5], we used Hypervolume, RNI, GD [20], IGD [31], and
Spread [20] as quality indicators. However, as some of them need previous prob-
lem knowledge, such as Spread, IGD and GD, they were not employed in the
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current work.2. Moreover, in the current work we added UD, HR and ER to this
set, because they don’t need a Pareto Front specification. Thus, we can evaluate
subpopulations of solutions by considering the whole population. We also em-
ployed AE, which help us to evaluate the computational efficiency time along
the execution.

4 MOABHH framework

MOABHH (Multi-Objective Agent-Based Hyper-Heuristic) [5] is an agent-based
hyper-heuristic framework focused selecting during execution time the most
suitable MOEA by employing voting techniques. The main idea is to consider
MOEAs as candidates and quality indicators as voters in an election. Then, with
the election outcome, a hyper-heuristic agent can assign more or fewer resources
for a given MOEA. This framework can be instantiated using different quality in-
dicators and MOEAs. Figure 1 shows MOABHH interaction, where three kinds
of agents (MOEAs, Voters and HH) share four kinds of artifacts. In this fig-
ure, Agents are represented by circles, Artifacts by parallelograms, instances by
rectangles. Solid arrows mean writing permission and dotted lines mean reading
permission.

Fig. 1. MOABHH interaction, adapted from [5]

2 These indicators are not described here.
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4.1 Artifacts

Artifacts are non-autonomous, function-oriented, stateful entities, designed by
Multi-Agent Systems programmers. They are controllable and observable, and
that are used to model the tools and resources used by agents [19]. MOABHH
employs four different artifacts:

– Population artifact keeps the main current population of solutions. This ar-
tifact is used by Indicator voter agents. When MOABHH starts, the Problem
Manager agent randomly generates the first population, and then assigns it
to this artifact;

– Voting pool artifact keeps all the voting preferences necessary to perform an
election. This artifact is used by voter agents and the HH Agent, who defines
which MOEA wins the election according to its voting rules;

– HH decision space artifact keeps all HH agent decisions. All decisions can
be read by MOEA agents. These decisions define how many solutions each
MOEA agent has to generate in the next cycle;

– System variables artifact keeps the current values of the optimization prob-
lem parameters: (i) reference points for quality indicators and MOABHH
variables such population size, the number of generations in the training
phase (δ) and the number of generations that each MOEA can execute (γ).
This artifact is readable by all agents, and may be written by the Problem
Manager Agent.

4.2 Agents

An agent is a computer system that is situated in some environment, and is capa-
ble of autonomous action in this environment in order to meet its objectives [27].
MOABHH uses four different types of agents:

– The Problem Manager agent is responsible for receiving all MOABHH pa-
rameters and set them in the System Variables artifact;

– The MOEA agent contains a particular evolutionary algorithm instance.
This agent is responsible for generating a given number of solutions in a
generation, where the number is defined by HH agent. After generating new
solutions, this agent adds the generated solutions to Population Artifact.
All generated solutions are associated with their respective generator agent.
Thus, it is possible to evaluate the MOEA agent performance;

– The Voter agent contains an instance of a quality indicator. This agent
works as follows: (i) First, each Voter agent reads the current population
from Population Artifact and splits it into subpopulations, associating each
of them with the MOEA agent that has generated it; (ii) then, this agent
evaluates each subpopulation according to its instanced quality indicator
and (iii) the agent votes, sending a ranking of its preferences following the
quality values to the Voting pool artifact ;

– The HH agent, the hype-heuristic agent, uses information available on the
Voting Pool Artifact to employ a voting method. With the voting outcome,
this agent defines how many solutions each MOEA can generate, giving to
the best MOEA more solutions to generate in the next cycles.
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4.3 Algorithm

Algorithm 1 shows MOABHH steps. First, all agents and artifacts are initialized
using MOABHH parameters, the optimization problem is instantiated and all
global variables set in System Variables artifact. The Problem manager agent
then generates a random population of solutions. The execution continues per-
forming the training phase where all MOEA agents receive the same number of
solutions to generate. This is necessary because it is hard to evaluate MOEA
at the beginning of the search. Thus, the task of comparing algorithm perfor-
mance becomes harder. So, MOABHH does not perform any quality evaluation
until the training phase finishes, after δ generations. After finishing the train-
ing phase, the voting process starts by Voter agents evaluating MOEAs related
solutions, ranking preferences and setting the ranking to Voting pool artifact.
After voter agents vote, the HH agent performs the voting method and assign
a bigger number of solutions to generate in the next generations to the election
winner and a lower number of solutions to the election losers. After updating the
number of solutions to generate, all MOEA agents execute over γ generations
and add new solutions to Population artifact.

Algorithm 1: MOABHH Pseudocode.
1 Input: Problem, γ - generations for each LLH execute, δ - The training size
2 begin
3 Initialize agents and artifacts;
4 Generate a random population of solutions;
5 while Training do
6 Uniformly share the number of solutions to generate among Low-Level Heuristic

agents;
7 Low-Level Heuristic Agents execute for γ generation;
8 Update the main population artifact;
9 end

10 while Executing do
11 Voters evaluate Low-Level Heuristics outcome and vote;
12 HH agent performs the voting method;
13 HH agent shares the number of solutions to generate among Low-Level Heuristic

agents according to voting results;
14 Low-Level Heuristic agents execute for γ generations;
15 Update the main population;
16 end
17 return Main population
18 end

Surviving solutions are defined by each MOEA agent, that means if a meta-
heuristic agent has to generate n new solutions, the resulting population also
will have n solutions.

In [5], we had defined fixed rules for the increment in the participation of
generating solutions. A increment of 0.75 ∗β in the participation pool was given
to the election winner, and an increment of 0.25 ∗ β to the second best rated
MOEA, in case of three MOEA agents running. For just two MOEA agents, we
augment a rate of β to the winner. The worst rated MOEA aways lost a rate
of β. On the other hand, fixed rules makes the approach harder to adapt to a
bigger set of MOEAs. Thus, we defined in this work a function (Equation 25) in
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order to give us similar values, but allowing different sizes of MOEA set. In this
function, n is the number of candidates.

fx(pos, n) =


2n if pos = 1
0 if pos = n
2n−pos otherwise

 (24) ∀pos ∈ rank fx(pos, n)∑n
i=1 fx(i, n)

∗ β (25)

4.4 Voting Method

The Copeland Voting method [7] is a Condorcet method. The Condorcet’s princi-
ple says that if a candidate defeats every other candidate in pairwise comparisons
(a Condorcet winner), it must be elected [17]. Thus, after all voters vote, a pair-
wise comparison is performed. In Figure 2, we have three different candidates
and voters. Then we perform the one-on-one contest for each candidate in all
voters. Thus, the Condorcet’s principle has the fundamental idea that the opin-
ion of the majority should prevail, at least when majority comparisons pinpoint
an unambiguous winner [17].

Fig. 2. Voting procedure, adapted from [5]

5 Experiments

5.1 Setup

In our experiments, we used four independent evolutionary algorithms as
MOEAs: NSGA-II, SPEA2, IBEA and GDE3, described in section 3. These four
algorithms have been extensively applied in several multi-objective optimization
problems, so they are suitable for our approach. IBEA, NSGA-II and SPEA2
were set according to [8], using as heuristics SBX Crossover (with distribution 30
and rate 1.0) and Polynomial Mutation (with distribution 20 and rate de 1/n,
where n =number of problems variables). The population size was defined as
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100. GDE3 also employed the same mutation configuration and used rand/1/bin
differential evolution using Cr = 0.2, F = 0.2 and K = 0.5 as parameters.

MOABHH parameters was set as λ = δ = 40, β = 3. As Voter Agents we
employed all six quality indicators mentioned in Section 3.6. As MOEA agents
we employed the four mentioned MOEAs. All experiments were executed 40
times, over 1000 generations.

The four studied problem don’t have a true Pareto Front P , due to the fact
they are aren’t benchmarks. However, to properly evaluate a multi-objective al-
gorithm we need a Pareto Front. With this purpose, we created an approximated
Pareto Front Papprox.

In order to create a Papprox, first we generated a set of solutions SS composed
by all found solutions, for a give problem, considering all algorithms (four MOEA
and MOABHH). Then we generated Papprox = ND(SS), selecting just non-
dominated solutions to compose Papprox.

Posteriorly, all algorithm performance (40 values for each algorithm) were
calculated using Hypervolume, IGD [31] and Epsilon [32]. For Hypervolume, we
defined the reference point using the worse point found in Papprox. Finally, all
indicator averages values for each problem were taken and statistically compared
using Kruskal-Wallis test with 1% of significance.

5.2 Results

Table 1 presents Hypervolume, IGD and Epsilon averages for all algorithms.
Bold values mean statistical equivalence and highlighted cells denotes the best
values. Lower IGD and Epsilon values and higher Hypervolumes are preferred.

For the Car Side Impact problem, MOABHH found statistically tied results
with IBEA considering hypervolume, and has overcome all others algorithms
using IGD;however, it was beaten by GDE3 considering the Epsilon indicator. If
we analyze just the individual MOEAs outcome, we can see that IBEA overcomes
all other MOEAs (GDE3, NSGA-II, and SPEA2) in hypervolume and IGD, as
GDE3 does considering the Epsilon indicator. Hence, MOABHH was rated better
than most individual MOEAs, and it was just overcome in our experiments
considering the Epsilon values.

For the CrashWorthiness problem, MOABHH found the best value in all the
quality indicators, but statistically tied results with GDE3, which is considered
in th literature so far as the best MOEA for this problem.

For the Water problem, MOABHH found the best value in all the quality in-
dicators, with statistical difference considering Hypervolume and IGD indicators;
it tied with GDE3 with respect to the Epsilon indicator. In in our experiments,
GDE3 has shown to be the best MOEA in this problem.

For the Machining problem, MOABHH statistically tied results with IBEA,
which is the best MOEA, considering the three quality indicators; MOABHH
found the best IGD average while IBEA found the best solutions considering
Hypervolume and Epsilon indicators.

Considering all results, MOABHH statistically overcomes all individual
MOEAs three times. In the other eight times, MOABHH statistically tied with
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them. Within these eight times, MOABHH found higher hypervolumes and lower
IGD/Epsilon five times. There was just once MOABHH had statistically over-
come by individual MOEAs.

These are interesting and promising results, since MOABHH’s goal is to
diminish the user effort to choose a MOEA without losing performance. In some
cases, our approach has also overcomes individual MOEAs results, showing that
the HH agent has chosen better solutions generated by all MOEAs.

Table 1. Hypervolume, IGD and Epsilon Result Table

Problem GDE3 IBEA NSGAII SPEA2 MOABHH

Car Side Impact 4.4342E-01 4.7710E-01 3.7671E-01 4.4507E-01 4.7161E-01
CrashWorthiness 7.3603E-01 7.0594E-01 6.6108E-01 7.2210E-01 7.3985E-01
Water 5.6227E-01 5.0439E-01 4.3440E-01 4.9700E-01 5.8632E-01Hyp.
Machining 1.8393E-01 2.7348E-01 1.7288E-01 1.7705E-01 2.7118E-01

Car Side Impact 7.8878E-04 8.1957E-04 1.2878E-03 7.5318E-04 6.6803E-04
Crash Worthiness 6.9652E-04 2.6247E-03 1.2639E-03 7.5822E-04 4.2570E-04
Water 1.4869E-03 3.5247E-03 2.1495E-03 1.9045E-03 8.9055E-04IGD
Machining 1.6902E-03 5.1369E-04 1.6953E-03 1.7521E-03 5.0530E-04

Car Side Impact 1.6403E-01 9.6482E-02 1.9015E-01 1.8226E-01 1.3509E-01
Crash Worthiness 5.3299E-02 1.4667E-01 1.1723E-01 6.4985E-02 4.3900E-02
Water 1.4684E-01 2.5247E-01 2.5750E-01 2.1015E-01 1.1912E-01Ep.
Machining 4.8167E-01 1.6378E-01 4.9150E-01 5.0770E-01 1.9654E-01

6 Conclusions

This paper evaluated MOABHH (Multi-Objective Agent-Based Hyper-
Heuristic) in real-world applications, by searching solutions for four multi-
objective engineering optimization problems. As we intended to solve real-world
problems, we enhanced the proposal initially published in [5] by applying a dif-
ferent quality indicator set and also employing GDE3 as MOEA agent, making
MOABHH more powerful.

The results showed that MOABHH was very competitive against the best
known MOEAs, in most of the cases, it has found better Hypervolume, IGD
and Epsilon averages, sometimes with statistical difference. We believe that this
makes this approach interesting for engineers to solve their real-world problems,
without having to test all other algorithms in order to find which is the best one.

As for further work, we intend to evaluate different voting methods and to
use a larger number of MOEAs in future experiments.

Acknowledgments

Vinicius de Carvalho is supported by CNPq, Brazil, grant 140974/2016-4.



14 de Carvalho and Sichman

References

1. Acan, A., Lotfi, N.: A multiagent, dynamic rank-driven multi-deme architecture
for real-valued multiobjective optimization. Artificial Intelligence Review 48, 1–29
(2016)

2. Boussaid, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics.
Information Sciences 237, 82 – 117 (2013)

3. Bradstreet, L., Barone, L., While, L., Huband, S., Hingston, P.: Use of the wfg
toolkit and pisa for comparison of moeas. In: 2007 IEEE Symposium on Comput.
Intell. in Multi-Criteria Decision-Making. pp. 382–389 (April 2007)

4. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E.and Qu,
R.: Hyper-heuristics: a survey of the state of the art. Journal of the Operational
Research Society 64(12), 1695–1724 (Dec 2013)

5. de Carvalho, V.R., Sichman, J.S.: Applying Copeland Voting to Design an Agent-
Based Hyper-Heuristic. In: Proc. of the 16th Conference on Autonomous Agents
and MultiAgent Systems. pp. 972–980 (2017)

6. Coello, C.: Evolutionary algorithms for solving multi-objective problems. Springer,
New York (2007)

7. Copeland, A.H.: A reasonable social welfare function. In: Mimeographed notes
from a Seminar on Applications of Mathematics to the Social Sciences, University
of Michigan (1951)

8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems
with box constraints. IEEE Trans. on Evol. Comput. 18(4), 577–601 (Aug 2014)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Evol. Comput. 6(2), 182–197 (Apr
2002)

10. Ghiassi, M., DeVor, R., Dessouky, M., Kijowski, B.: An application of multiple
criteria decision making principles for planning machining operations. IIE Trans-
actions 16(2), 106–114 (1984)

11. Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dy-
namic multiobjective optimization. IEEE Transactions on Evolutionary Computa-
tion 13(1), 103–127 (Feb 2009)

12. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part ii: Handling constraints
and extending to an adaptive approach. IEEE Trans. Evolutionary Computation
18(4), 602–622 (2014)

13. Kukkonen, S., Lampinen, J.: Gde3: The third evolution step of generalized differ-
ential evolution. In: Evolutionary Computation, 2005. The 2005 IEEE Congress
on. vol. 1, pp. 443–450. IEEE (2005)

14. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: A survey.
ACM Comput. Surv. 48(1), 13:1–13:35 (Sep 2015)

15. Liao, X., Li, Q., Yang, X., Zhang, W., Li, W.: Multiobjective optimization for
crash safety design of vehicles using stepwise regression model. Structural and
multidisciplinary optimization 35(6), 561–569 (2008)
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