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Abstract. Sanctioning is one of the most adopted enforcement mech-
anisms in the governance of multiagent systems. Current enforcement
frameworks, however, restrict agents to reason about and make sanc-
tioning decisions. We developed the Gavel framework, an adaptive sanc-
tioning enforcement framework that enables agents to decide for the
most appropriate sanction to apply depending on various decision fac-
tors. The potential benefits and use of the framework are shown using a
Public Goods Game in which agents are endowed with different strategies
combining material and reputational sanctions.
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ware Engineering.

1 Introduction

Norm enforcement is one of the central puzzles in social order and social con-
trol theories. It refers to the process in which an entity monitors and encour-
ages others to comply with norms. Sanctioning is one of the most adopted and
largely recognised norm enforcement mechanisms used to promote appropriate
behavioural standards, in particular norm compliance [26]. Norm enforcement,
specially sanctioning, has been addressed in a broad range of perspectives and
disciplines, such as philosophy [3], law [16], economics [4], sociology [17] and so-
cial psychology [9]. These disciplines recognise that different sanction types (e.g.,
emotional, informational, reputational, and material [28]) are used by individuals
and institutions to enforce and promote norms compliance.

In Normative Multiagent Systems (NMASs), norm enforcement enables reac-
tion to norms violation (i.e., punishment) or compliance (i.e., reward) henceforth
identified as sanction. The degree to which a norm is enforced plays a crucial
role in NMAS dynamics and conveys a great deal of norm-relevant information
that affects other normative processes.

There are two traditional approaches to norm enforcement in NMAS4: reg-
imentation and regulation. The former assumes that agents can be controlled
? Igor Conrado Alves de Lima was fully supported by CNPq, Brazil, grant number
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4 See [2] for an extended taxonomy of norm enforcement mechanisms.
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and non-compliant actions prevented. The latter allows violations, yet sanctions
may be applied to the violator whenever a violation is detected.

Both approaches can be arranged in a centralised or distributed mode. The
regimentation approach operates mostly in a centralised mode through norma-
tive institution frameworks, such as Electronic Institutions [25, 13] and Organi-
sation Models [12, 14]. These frameworks provide a reference normative system
to which agents have to abide and infrastructure entities enforce the compliance
of agents’ actions and interactions with the norms. The regulation approach,
conversely, operates mostly in a distributed mode and equires that agents’ ar-
chitectures, such as BOID [7], NoA [18], and EMIL-A [1], are endowed with
mechanisms that enable agents to enforce norms.

Cardoso and Oliveira [8] proposed a centralised norm enforcement mecha-
nism for contractual commitments. Their mechanism pre-define sanctions that
are applied by enforcer agents without taking into account any individual or
contextual information. Centeno et al. [10] extended this approach to adapt
sanctions based on contextual information. Modgil et al [23] proposed a general
distributed architecture for norm-governed systems that relies on distributed
infrastructural agents to monitor and apply pre-defined sanctions. In line with
López and Luck [20], Criado et al. [11] relaxed some of the constraints imposed
on the infrastructural enforcer agents allowing them to punish or reward due to,
respectively, norms’ violation or compliance. In this mechanism, each norm is as-
sociated with specific punishment or reward sanctions, thus limiting the agents’
decision autonomy. To overcome this limitation, Villatoro et al. [30] proposed a
technique that allows enforcers to adapt the strength of the sanction based on
the number of defectors. Mahmoud et al. [21] proposed the use of the violation
characteristics to adapt the magnitude or frequency of the sanction. Moreover,
Mahmoud et al. [22] introduced the use of reputation as a means for enforcers
to adapt the strength of the sanctions.

Although Pasquier et al. [27] identified the importance and need to have
different sanction types and endow agents with sanction reasoning and deci-
sion capabilities, Nardin et al. [24] showed that the available norm enforcement
frameworks lack full support to four main requirements to render these features
possible:

R1 Support for multiple categories of sanctions (e.g., legal sanctions, ostracism,
reputation spreading);

R2 Potential association of multiple sanctions with a norm violation or com-
pliance (e.g., provide a set of sanction options instead of pre-establishing a
fixed set to a norm);

R3 Reasoning about the most adequate sanction to apply depending on different
factors (e.g., one might consider the sanctionee’s history to determine an
appropriate sanction to apply, if any); and

R4 Adaption of the sanction content depending on context (e.g., a norm violation
of high magnitude might incur a more severe negative sanction).

In Nardin et al. [24], the authors propose a conceptual sanctioning process
model that could possibly overcome these drawbacks. However, they have not
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designed or implemented an adaptive sanctioning enforcement framework based
on this conceptual model. This is precisely what we present in this paper: the
development of the Gavel framework, based on this previous conceptual model.
Moreover, we show the potential benefits and use of this framework through a
Public Goods Game (PGG) [19], in which agents are endowed with different
strategies combining material and reputational sanctions.

2 Gavel Framework

Gavel is an adaptive sanctioning enforcement framework based on the conceptual
sanctioning process model presented by Nardin et al. [24]. It enables agents to
decide for the most appropriate sanctions to apply, depending on their current
context assessed by a set of sanctioning decision factors.

The conceptual sanctioning process model specifies the features and compo-
nents of our sanctioning enforcement framework. Both norm violation and com-
pliance are considered in the process, respecting the general notion of sanction
as a negative or positive reaction to normative behaviours. The entire sanction-
ing process is realised by agents endowed with special capabilities (i.e., Detec-
tor, Evaluator, Executor, Controller, and Legislator) supported by specialised data
repositories (De Jure and De Facto). Next, we define the components of our
norm enforcement framework.

2.1 NMAS

Definition 1. (NMAS) A NMAS is a system composed of a set of autonomous
and heterogeneous agents situated in a shared environment, whose actions and
interactions are ruled by norms and sanctions. A NMAS, either open or closed,
is defined as

NMAS = 〈Env,Ag,R,Ac,N,S,L〉,

where

– Env is the environment that may assume any of a finite set of discrete states;
– Ag = {agi : i ≤ |Ag|} is the set of agents that can act on the environment

or interact among themselves;
– R = {ri : i ≤ |R|} is the set of roles that agents can play;
– Ac = {αi : i ≤ |Ac|} is the set of actions that agents can perform;
– N = {ni : i ≤ |N|} is the set of norms prescribing the agents’ behaviours;
– S = {si : i ≤ |S|} is the set of sanctions prescribing possible reactions to

norm violation or compliance;
– L = N × S is the set of links between norms and sanctions.
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2.2 Norms, Sanctions and Links

Definition 2. (Norm) A norm ni ∈ N is a guide of conduct prescribing how
agents ought to behave in a given situation. A norm is defined as

ni = 〈status, activation, issuer, target, deactivation, deadline, content〉,

where

– status ∈ {enabled, disabled} indicates whether ni is in force;
– activation is the set of contextual conditions that renders the norm applicable;
– issuer ∈Ag identifies the entity that originally issued the norm;
– target ∈Ag identifies the agent to which the norm is addressed;
– deactivation is the set of contextual conditions that renders the norm no

longer applicable once active;
– deadline is the set of contextual and temporal conditions which determine

the deadline to comply with the norm;
– content is the criteria prescribing the agents’ behaviours.

Definition 3. (Norm Instance) A norm instance ni
′ is the result of applying a

ground substitution to a norm ni. A norm instance is defined as

ni
′ = 〈status′, activation′, issuer′, target′,deactivation′,deadline′, content′〉,

where each term of ni
′ unifies with its corresponding in ni.

Definition 4. (Sanction) A sanction si ∈ S is a reaction to a norm compliance
or violation. A sanction is defined as

si = 〈status, activation, category, content〉,

where

– status ∈ {enabled, disabled} indicates whether si is in force;
– activation is the set of contextual conditions that renders the sanction appli-

cable;
– category is the sanction classification according to the sanction typology de-

tailed in [24], defined as

category = 〈purpose, issuer, locus,mode,polarity,discernability〉,

where
• purpose ∈ {Punishment, Reward, Enablement, Guidance, Incapacita-

tion},
• issuer ∈ {Formal, Informal},
• locus ∈ {Self-Directed, Other-Directed},
• mode ∈ {Direct, Indirect},
• polarity ∈ {Positive, Negative},
• discernability ∈ {Noticeable, Unnoticeable};

– content is the specification of the set of actions representing the sanction.
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Definition 5. (Sanction Instance) A sanction instance si
′ is the result of ap-

plying a ground substitution to a sanction si. A sanction instance is defined as

si
′ = 〈status′, activation′, category′, content′〉,

where each term of si
′ unifies with its corresponding in si.

Definition 6. (Link) A link li ∈ L is an association between a norm and a
subset of sanctions. A link is defined as

li = 〈ni,SLni〉,

where

– ni ∈ N is the norm being linked;
– SLni

= {slj | slj = 〈status, sj〉} is the set of sanction links to ni, where
• status ∈ {enabled, disabled} indicates whether slj is in force and
• sj ∈ S is the sanction being linked.

An enabled link states that an agent may consider a sanction sj as a possible
reaction to the compliance or violation of the norm ni.

2.3 Repositories

We define two types of data repositories: De Jure and De Facto.

Definition 7. (De Jure) De Jure (DJ) is a repository which stores specifica-
tions of norms and sanctions and their associations. It is defined as

DJ = 〈NDJ,SDJ,LDJ〉,

where

– NDJ ⊆ N is the set of all norms stored in DJ;
– SDJ ⊆ S is the set of all sanctions stored in DJ;
– LDJ ⊆ L is the set of all links between norms and sanctions stored in DJ.

Definition 8. (De Facto) De Facto (DF) is a repository of historical informa-
tion about sanction decisions, applications, and outcomes. It is defined as

DF = 〈SDDF,SADF,SODF〉,

where

– SDDF ( Sanction Decision Set) represents the set of sanction decisions made
by Evaluators and stored in DF. Each sanction decision sdi ∈ SDDF is
defined as

sdi = 〈timed,detector, evaluator, target,nj
′, sk

′, cause〉,

where
• timed indicates the global time at which the sanction was decided;
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• detector ∈Ag identifies the agent that reported the norm compliance or
violation;

• evaluator ∈Ag identifies the agent that decided the sanction;
• target ∈Ag identifies the agent to which the sanction is directed;
• nj

′ is the norm instance which was evaluated by the evaluator;
• sk

′ is the sanction decided by evaluator for target in response to nj
′;

• cause ∈ {compliance, violation} indicates what led evaluator to decide
for the sanction sk

′.
– SADF ( Sanction Application Set) represents the set of sanction applications

executed by Executors. Each sanction application sai ∈ SADF is defined as

sai = 〈timea, decisionj, executor〉,

where
• timea indicates the global time at which the sanction was applied;
• decisionj ∈ SDDF is the sanction decision to which sai is related;
• executor ∈Ag identifies the agent that applied the sanction.

– SODF ( Sanction Outcome Set) represents the set of sanction outcomes ob-
served by a Controller. Each sanction outcome soi ∈ SODF is defined as

soi = 〈timeo, applicationj, controller, efficacy〉,

where
• timeo indicates the global time at which the efficacy of the sanction was

assessed;
• applicationj ∈ SADF is the observed sanction application;
• controller ∈Ag identifies the agent that observed the outcome;
• efficacy indicates how effective the sanction was in promoting norm com-

pliance. It can use discrete (e.g., effective and ineffective) or continuous
(e.g., [−1, 1]) values.

2.4 Capabilities

The Gavel framework defines five capabilities: Detector, Evaluator, Executor, Con-
troller, and Legislator. Agents having these capabilities perform tasks in different
stages of the sanctioning process.

Definition 9. (Detector) The Detector perceives the environment and detects a
norm violation or compliance. It watches for normative events, creates norm
instances, and reports compliances and violations to an Evaluator. The watch
function is defined as

watch : e×KB × Nenabled → N′, (1)

where

– e is the event to be analysed;
– KB is the Detector’s knowledge base;
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– Nenabled = {ni | ni ∈ N ∧ ni.status = enabled} is the set of enabled norms
known by the agent;

– N′ = {ni
′ | ni ∈ Nenabled and e ∧KB |= ni

′.activation} is the set of norm
instances whose activation condition holds given e and KB.

Each norm instance obtained from watch is assessed as complied, violated,
or deactivated. If complied or violated, then the Detector reports such fact to an
Evaluator.

Definition 10. (Evaluator) The Evaluator receives from the Detector the report
of a violation or compliance of a norm instance ni

′. It then obtains from the De
Jure repository all the applicable sanctions associated with ni

′ by enabled links
to decide for the sanctions it judges appropriate to apply, if any. This task is
performed by the evaluate function, which is defined as

evaluate : ni
′ ×KB × SLni′,enabled → SDDF

ni′ , (2)

where

– ni
′ is the norm instance to be evaluated;

– KB is the knowledge base from which the agent extracted contextual factors
to be considered in the evaluation;

– SLni′,enabled is the set of enabled sanction links associated with ni
′;

– SDDF
ni′ is the set of sanction decisions for ni

′.

Definition 11. (Executor) The Executor agent agi receives from the Evaluator
a sanction decision sdj ∈ SD and decides whether or not to execute it. The
decision for not executing a sanction could result either from lack of resources
to operate or personal interests. In a real-world setting, for example, Evaluators
and Executors would be comparable to judges and police officers, respectively. The
execute function maps a sanction decision to actions in the environment:

execute : sdj →Ac. (3)

If the actions defined in sdj are successfully executed, then the Executor records
the sanction application sak = 〈timea, sdj, agi〉 in the SADF.

Definition 12. (Controller) The Controller agi monitors the outcomes of a sanc-
tion application sak to determine its efficacy and records its judgement as a
sanction outcome soj = 〈timeo, sak, agi, efficacy〉 in SODF.

Definition 13. (Legislator) The Legislator creates, removes, and updates norms,
sanctions, and their associations in De Jure based on the assessment of the De
Jure and De Facto repositories along with its knowledge base.

legislate : DJ ×DF ×KB → DJ (4)
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3 Implementation

The Gavel framework5 has been implemented in Java and is mainly divided into
three packages (see Figure 1):
gavel.api provides interfaces for all the elements of the model;
gavel.base provides abstract classes which can be used as basis for customisa-

tion of some elements of the model;
gavel.impl contains generic concrete implementations of the model elements

(e.g., norms, sanctions, norm-sanction links, and data repositories) according
to contracts prescribed by interfaces defined in gavel.api and provides utility
classes with factory, parsing, and other supporting methods.

Fig. 1: Gavel’s architecture.

The framework includes generic in-memory data storage implementations for
three data repositories:
DeJure stores and provides operations to manage norms, sanctions, and norm-

sanction links. Initial norms, sanctions and norm-sanction links may be
loaded into DeJure by means of a regulative specification file. At runtime,
these elements can be created, retrieved, updated, or deleted;

DeFacto stores sanction decisions, applications, and outcomes at runtime;
CapabilityBoard stores capability assignment rules and the capabilities pos-

sessed by agents. If an agent has a certain capability and the repository is
informed, then such information will be available for the entire system. Also,
initial capability assignment rules may be loaded into CapabilityBoard via
a capability assignment specification file.

It is often desirable to specify norms, sanctions, norm-sanction links, and
capability assignment rules before the system starts running. Thus, system de-
signers can provide two XML (eXtensible Markup Language) specification files:
5 Source code available at https://github.com/gavelproject/gavel/.
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– Regulative specification — defines norms, sanctions, and norm-sanction links
specifications that will be initially stored in DeJure;

– Capability assignment specification — defines rules specifying which agents
will be allowed to possess which of the capabilities defined in the model.

Notice that Gavel does not provide execution plans for each capability as
these are dependent on the multiagent system platform.

In addition to the standard Java implementation, we have designed and im-
plemented Gavel for JaCaMo6, a reusable framework which integrates Gavel
with JaCaMo [5]. The benefit of such integration is twofold: (i) Gavel reposito-
ries are provided as CArtAgO [29] artefacts that may be used by agents; and (ii)
since Jason supports meta-programming [6], agents may acquire plans at run-
time from CapabilityBoard to learn how to perform tasks inherent to any of
the sanctioning capabilities (Detector, Evaluator, Executor, Controller, Legislator).
We have used this implementation in our case study, presented next.

4 Case Study

We have used the Gavel for JaCaMo framework to implement a version of the
Public Goods Game (PGG) partially inspired by [15].

4.1 Public Goods Game Model

Broadly used in experimental economics, agents in the PGG have private tokens
and secretly choose whether to contribute to a public pool. The tokens in this
pool are multiplied by a benefit factor and evenly divided among players.

In our PGG model, agents are endowed with a number of tokens and play
the game for a number of rounds (see Algorithm 1) or until they are in deficit
of tokens. At each round, agents are randomly grouped (line 2) and they decide
whether to free-ride or contribute a fixed amount to the public pool (line 3).
The sum of the contributions in each group is multiplied by a benefit factor and
evenly divided among the group agents regardless of their contribution (line 4).
Next, the agents’ decisions are disclosed to all other agents in their group (line
5) and agents decide whether or not to apply sanctions to other agents in their
group (line 6). Once sanctions are applied (line 7), agents with less than zero
tokens are eliminated from the game (line 10–12).

Agents can have one of four types of contribution strategies:

– Cooperator (C) who always contributes to the pubic pool and does not sanc-
tion other agents;

– Free-Rider (FR) who never contributes to the public pool and does not
sanction other agents;

– Nice (N) who always contributes to the public pool and may apply sanctions
if the percentage of detected free-riders in its group exceeds a threshold;

6 Source code available at https://github.com/gavelproject/gavel-jacamo/.
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Algorithm 1 Public Goods Game main cycle
1: Initialise agents
2: for number of rounds do
3: Random group formation
4: Agents make their contribution decision
5: Gather and distribution of contributions in each group
6: Disclose contribution decisions in the group
7: Agents make their sanction decisions
8: Apply sanctions
9: for each agent do

10: if Agent’s tokens < 0 then
11: Agent is culled from the game
12: end if
13: end for
14: end for

– Mean (M) who decides to free-ride and may apply sanctions if the percent-
age of detected free-riders in its group exceeds a threshold; otherwise, it
contributes and does not sanction.
An agent agi identifies an agent agj as free-rider if the reputation that agi

has about agj is below a certain threshold. Agents keep an individual record of
all other agents in the game. Each agent agi calculates the reputation of agj by
taking the weighted average of its direct experience and the reputation received
from others about agj , which is defined as

Rij = W ×∆E + (1−W )×∆I, (5)

where Rij ∈ [0, 1] is the reputation the agent agi has about the agent agj , where 0
means the worst and 1 means the best reputation. ∆E is the proportion of good
personal experiences agi had with agj , ∆I is the average reputation received
about agj by agi, and W is the weight given to the personal experiences.

Nice and Mean agents also use features of the Gavel model to guide their
sanction choice towards free-riders. The sanction strategies available are:
– Random (R): Agents decide randomly between gossiping about or punishing

free-riders;
– Threshold (T): Agents decide whether to gossip or punish by comparing the

reputation of the free-rider with a randomly picked number from a uniform
distribution between 0 and 1. If the free-rider’s reputation is less than the
random number, the agent punishes the free-rider, otherwise it gossips.
There are some constraints to apply either type of sanction. Each agent has

a limit on the number of reputation transmissions in each round. If this limit
is reached, reputation transmission is not possible. The punishment inflicted on
free-riders has a cost to the agent inflicting it, thus an agent can only sanction if it
can afford. This cost, called enforcement cost, could be seen as the effort required
to apply a sanction. It is worth noticing that agents do not lie in this model,
thus only truthful information is transmitted and only defectors are punished.
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4.2 Agents Interaction

Figure 2a depicts a fully norm-compliant round of the game. Once the manager
opens the round, players start contributing to the pool. When all contributions
are made, the manager applies the benefit factor, gathers the resulting amount,
distributes each agent’s portion, discloses contributions, and closes the round.

(a) Round with all players complying with
the norm.

(b) Round with one player violating
the norm.

Fig. 2: Sequence diagrams of a norm-compliant and a non-norm-compliant round.

Figure 2b illustrates a round in which a sanctioning occurs. After the manager
discloses the contributions, the player p1 notices that p2 did not contribute.
Then, player p1 decides for a sanction and applies it to the player p2.

4.3 Implementation

For the simulation of our PGG7, we have implemented two types of agents: game
manager and player. The manager is responsible for 1) creating rounds; 2) defin-
ing groups; 3) gathering contributions; 4) multiplying the total contribution by a
benefit factor; 5) dividing the result evenly among players; and 6) disclosing the
contribution of each player. Conversely, players are limited to 1) contributing to
the pool; and 2) sanctioning other players based on the content of DeJure. The
pools to which players cooperate are controlled by the manager and implemented
as domain artefacts using CArtAgO.

All players are endowed with the Detector, Evaluator, Executor, and Controller
capabilities, but for the sake of simplicity, no Legislator was included.

Only one norm regulates the players’ behaviours in our PGG. As shown
below, this norm, identified as positive contribution, states that every player
7 Source code available at https://github.com/gavelproject/pgg/.
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is obliged to contribute with 1 token to every pool it participates. If an agent does
not comply with the norm before the pool finishes, then the norm is violated.

norm(
id(positive_contribution),
status(enabled),
activation(pool_member(Player)),
issuer(manager),
target(Player),
deactivation(false),
deadline(pool_status("FINISHED")),
content(obligation(contribution(Player,1)))

)

The following two links state that the positive contribution norm is linked
to two sanctions, punishment and gossip:

ns_link(
nid(positive_contribution),
sanction_links(sanction_link(status(enabled),sid(punishment)),

sanction_link(status(enabled),sid(gossip))
)

)

The punishment sanction is only applicable if the player evaluating the viola-
tion is not the target and can afford the sanction. As shown below, this negative
informal sanction counts as applied when the Executor directly punishes the
target inflicting a pre-established cost.

sanction(
id(punishment),
status(enabled),
activation(not .my_name(Target) & cost_to_punish(Cost) & tokens(Tokens) & Cost <= Tokens ),
category(purpose(punishment), issuer(informal), locus(other_directed), mode(direct),

polarity(negative), discernability(noticeable)),
content(punish(Target))

)

Conversely, the gossip sanction is only applicable if the player evaluating
the violation is not the target and has not reached the limit of reputation trans-
missions in that round, there is a player in another group, and the target is
considered a free-rider. As shown below, this is a negative informal sanction
that counts as applied when the Executor transmits reputation about the target
to another agent from another group.

sanction(
id(gossip),
status(enabled),
activation(not .my_name(Target) & not transmissions_credit(0) &

not players_in_other_groups([]) &
reputation(Target,Reputation) &
min_reputation_cooperator(MinRepCoop) &
Reputation < MinRepCoop),

category(purpose(punishment), issuer(informal), locus(other_directed), mode(indirect),
polarity(negative), discernability(unnoticeable)),

content(gossip(Target,Reputation))
)
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4.4 Evaluation Scenarios

We ran 2 evaluation scenarios to analyse how Gavel enables agents to reason
about sanctions. These scenarios vary by just one feature, the type of sanc-
tioning strategy (i.e., Random or Threshold) employed by all agents. For each
scenario the agents population was formed by 400 agents, 100 of each contribu-
tion strategy (i.e., Cooperators, Free-riders, Nice, and Mean). The contribution
to the public pool was set to 1 token, and the benefit factor was set to 3. Each
agent was endowed with an initial amount of 50 tokens to be used to contribute
to the public pool or to sanction others. Nice and Mean agents consider sanc-
tioning other agents if they detect more than 20% of free-riders in their group.
An agent is considered a free-rider if its reputation is below a threshold set to
0.6. A punishment involves a cost to the punisher (i.e., enforcement cost) and a
cost to the punished agent (i.e., punishment cost). A gossip does not have a cost,
although its use is limited by a maximum number of transmissions per round.

We ran the model for 100 rounds in each scenario, repeating 10 times with
different random seeds for each combination of parameter values from Table 1.

Table 1: Simulation parameters
Parameter Values

Enforcement cost 0.2 1
Punishment cost 2 5
Group size 5
Number of transmissions 10

In our scenarios we aimed at showing the potential benefits and use of Gavel
to implement a simple (i.e., Random) and a more elaborated (i.e., Threshold)
sanctioning strategies. We evaluated these scenarios by checking the average
proportion of cooperation per group measured as the total number of agents
contributing to the pool divided by the total number of agents per round. Four
combinations of enforcement and punishment costs were identified: LcLp (low
cost, low punishment), LcHp (low cost, high punishment), HcLp (high cost, low
punishment), and HcHp (high cost, high punishment).

We started by evaluating the scenario in which agents employ the Random
strategy. As shown in Figure 3a, the agents were not able to achieve more than
70% of cooperation when the punishment cost was low. Starting approximately
from the 70th round, however, both LcHp and HcHp allowed cooperation to
reach 100% as a result from the death of free-riders.

Figure 3b shows that higher levels of cooperation were achieved when agents
employed the Threshold strategy. Due to an informed heuristic used in this ap-
proach, agents were able to achieve 100% of cooperation for every combination of
parameters. For the LcHp and HcHp combinations, 100% could even be achieved
earlier when compared to Random.

Our results show that the sanction reasoning capability provided by Gavel
allows agents to adapt to their current context improving the effectiveness of
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(a) Random sanction strategy (b) Threshold sanction strategy

Fig. 3: Cooperation rates when agents employ different sanction strategies.

their actions and, specifically to PGG, it helps to improve the cooperation rate.

5 Conclusions and Future Work

In this paper, we have designed and implemented an adaptive sanctioning en-
forcement framework, called Gavel, based on the conceptual model proposed by
Nardin et al. [24]. We implemented Gavel for JaCaMo, an integration of Gavel
with JaCaMo, and used it to implement a version of the Public Goods Game
(PGG) inspired by [15], in which agents can decide which type of sanction to
apply at each stage of the game. Our results show that the Threshold sanction
strategy, a simple sanctioning decision heuristic that uses reputation, improves
the cooperation rate in the game compared to the Random sanction strategy, a
sanctioning strategy that does not make any informed decision for sanctioning.

The main advantages for using Gavel are its flexibility and adaptability. Gavel
can be treated as a component which can be connected to or implemented within
any agent. By using it, agents are free to choose the sanctions and intensity they
deem the best to sanction a violator or complier agent. They may also update
the legislation, or De Jure, to obtain higher levels of norm compliance. As these
decisions are all dependent on the current context and historical facts, Gavel can,
therefore, assure high level of flexibility and adaptability for norm enforcement
in NMAS.

Conversely, Gavel’s main disadvantages are limited control and predictabil-
ity of final results. These are actually direct consequences of the flexibility it
provides. As the sanctioning mechanism depends on the system’s history and
evolution, this influences how agents will learn and apply sanctions.

Our next main step is to further explore the adaptability Gavel provides. We
intend to use reinforcement learning to allow Evaluators making better sanction
decisions and Legislators updating De Jure based on De Facto. Furthermore, we
plan to conduct experiments using different parameter values (e.g., group sizes)
and dissociating cooperation from sanctioning strategy.
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